File size: 25,486 Bytes
56bbc8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
import gradio as gr
from typing import Dict, Any, Optional, List, Tuple, Union
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from transformers import AutoConfig
import logging

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


class PlotlyModelArchitectureVisualizer:
    def __init__(self, hf_token: Optional[str] = None):
        self.config = None
        self.hf_token = hf_token

        # Universal color scheme - consistent across all models
        self.universal_colors = {
            'embedding': '#f8f9fa',  # Light gray for embeddings
            'layer_norm': '#e9ecef',  # Light gray for layer norms
            'attention': '#495057',  # Dark gray for attention
            'output': '#f8f9fa',  # Light gray for output layers
            'text': '#212529',  # Dark text
            'container_outer': '#dee2e6',  # Outer container
            'moe_inner': '#d4edda',  # Green background for MoE models
            'dense_inner': '#f8d7da',  # Red background for dense models
            'feedforward_moe': '#28a745',  # Green for MoE FFN
            'feedforward_dense': '#dc3545',  # Red for dense FFN
            'router': '#fd7e14',  # Orange for router
            'expert': '#20c997',  # Teal for experts
            'callout_bg': 'rgba(255,255,255,0.9)',
            'accent_blue': '#007bff',
            'accent_green': '#28a745',
            'accent_red': '#dc3545'
        }

    def get_model_config(self, model_name: str) -> Dict[str, Any]:
        """Fetch model configuration from Hugging Face"""
        try:
            logger.info(f"Fetching config for {model_name}")
            config = AutoConfig.from_pretrained(model_name, token=self.hf_token, trust_remote_code=True)
            return config.to_dict()
        except Exception as e:
            logger.error(f"Error fetching config for {model_name}: {e}")
            return {}

    def extract_config_values(self, config: Dict[str, Any]) -> Dict[str, Any]:
        """Extract and normalize configuration values with architecture detection"""

        # Detect model architecture type
        model_type = config.get('model_type', 'unknown').lower()
        is_moe = any(key in config for key in [
            'num_experts', 'n_routed_experts', 'moe_intermediate_size',
            'num_experts_per_tok', 'router_aux_loss_coef'
        ])

        # Extract MoE-specific parameters
        moe_params = {}
        if is_moe:
            moe_params = {
                'num_experts': config.get('num_experts', config.get('n_routed_experts', 'N/A')),
                'experts_per_token': config.get('num_experts_per_tok', 'N/A'),
                'moe_intermediate_size': config.get('moe_intermediate_size', 'N/A'),
                'router_aux_loss': config.get('router_aux_loss_coef', config.get('aux_loss_alpha', 'N/A')),
                'shared_experts': config.get('n_shared_experts', 0)
            }

        # Calculate model size estimate (simplified)
        hidden_size = config.get('hidden_size', config.get('d_model', config.get('n_embd', 0)))
        num_layers = config.get('num_hidden_layers', config.get('n_layer', config.get('num_layers', 0)))
        vocab_size = config.get('vocab_size', 0)

        if isinstance(hidden_size, int) and isinstance(num_layers, int) and isinstance(vocab_size, int):
            # Very rough parameter count estimation
            if is_moe:
                # MoE models are much larger but use fewer parameters per token
                estimated_params = (hidden_size * num_layers * vocab_size) // 1000000  # Simplified
                size_suffix = "B" if estimated_params > 1000 else "M"
                estimated_params = estimated_params // 1000 if estimated_params > 1000 else estimated_params
            else:
                estimated_params = (hidden_size * num_layers * vocab_size) // 1000000
                size_suffix = "B" if estimated_params > 1000 else "M"
                estimated_params = estimated_params // 1000 if estimated_params > 1000 else estimated_params
        else:
            estimated_params = "Unknown"
            size_suffix = ""

        return {
            'model_type': config.get('model_type', 'unknown'),
            'hidden_size': hidden_size if hidden_size != 0 else 'N/A',
            'num_layers': num_layers if num_layers != 0 else 'N/A',
            'num_heads': config.get('num_attention_heads', config.get('n_head', config.get('num_heads', 'N/A'))),
            'vocab_size': vocab_size if vocab_size != 0 else 'N/A',
            'max_position': config.get('max_position_embeddings',
                                       config.get('n_positions', config.get('max_seq_len', 'N/A'))),
            'intermediate_size': config.get('intermediate_size',
                                            config.get('d_ff', hidden_size if hidden_size != 0 else 'N/A')),
            'is_moe': is_moe,
            'moe_params': moe_params,
            'estimated_size': f"{estimated_params}{size_suffix}" if estimated_params != "Unknown" else "Unknown",
            'kv_heads': config.get('num_key_value_heads', config.get('num_heads', 'N/A')),
            'head_dim': config.get('head_dim', config.get('qk_nope_head_dim', 'N/A')),
            'activation': config.get('hidden_act', config.get('activation_function', 'N/A'))
        }

    def add_container(self, fig: go.Figure, x: float, y: float, width: float, height: float,
                      color: str, line_width: int = 1, row: int = 1, col: int = 1) -> None:
        """Add a container/background box"""
        fig.add_shape(
            type="rect",
            x0=x, y0=y, x1=x + width, y1=y + height,
            fillcolor=color,
            line=dict(color='black', width=line_width),
            layer="below",
            row=row, col=col
        )

    def add_layer_box(self, fig: go.Figure, x: float, y: float, width: float, height: float,
                      text: str, color: str, hover_text: str = None, row: int = 1, col: int = 1,
                      text_size: int = 7) -> None:
        """Add a rounded rectangle representing a layer"""

        # Add the box shape
        fig.add_shape(
            type="rect",
            x0=x, y0=y, x1=x + width, y1=y + height,
            fillcolor=color,
            line=dict(color='black', width=1),
            layer="below",
            row=row, col=col
        )

        # Add text label
        fig.add_annotation(
            x=x + width / 2,
            y=y + height / 2,
            text=text,
            showarrow=False,
            font=dict(size=text_size, color=self.universal_colors['text']),
            bgcolor=self.universal_colors['callout_bg'],
            bordercolor="black",
            borderwidth=1,
            row=row, col=col
        )

        # Add invisible scatter point for hover functionality
        if hover_text:
            fig.add_trace(go.Scatter(
                x=[x + width / 2],
                y=[y + height / 2],
                mode='markers',
                marker=dict(size=12, opacity=0),
                hovertemplate=f"<b>{text}</b><br>{hover_text}<extra></extra>",
                showlegend=False,
                name=text
            ), row=row, col=col)

    def add_moe_router_visualization(self, fig: go.Figure, x: float, y: float,
                                     config_values: Dict[str, Any], row: int = 1, col: int = 1) -> None:
        """Add MoE router and expert visualization with improved layout"""

        moe_params = config_values['moe_params']

        # Router box - positioned more centrally
        router_width, router_height = 0.4, 0.12
        router_x = x + 0.2  # Center it better within the available space

        self.add_layer_box(
            fig, router_x, y, router_width, router_height,
            "Router", self.universal_colors['router'],
            f"{moe_params['experts_per_token']} experts activated <br>from {moe_params['num_experts']} total",
            row, col, 6
        )

        # Expert boxes - positioned with better spacing
        expert_y = y - 0.25  # Closer to router
        expert_width, expert_height = 0.18, 0.1
        experts_to_show = min(3, int(moe_params['experts_per_token']) if isinstance(moe_params['experts_per_token'],
                                                                                    int) else 3)

        # Center the experts under the router
        total_expert_width = experts_to_show * expert_width + (experts_to_show - 1) * 0.04
        experts_start_x = router_x + (router_width - total_expert_width) / 2

        for i in range(experts_to_show):
            expert_x = experts_start_x + i * (expert_width + 0.04)
            self.add_layer_box(
                fig, expert_x, expert_y, expert_width, expert_height,
                f"Expert\n{i + 1}", self.universal_colors['expert'],
                f"MoE intermediate size: {moe_params['moe_intermediate_size']}",
                row, col, 5
            )

            # Arrow from router to expert - pointing downward
            self.add_connection_arrow(
                fig, router_x + router_width / 2, y,
                     expert_x + expert_width / 2, expert_y + expert_height, row, col
            )

        # Add "..." if more experts exist - positioned to the right
        if experts_to_show < int(moe_params['experts_per_token']) if isinstance(moe_params['experts_per_token'],
                                                                                int) else False:
            fig.add_annotation(
                x=experts_start_x + experts_to_show * (expert_width + 0.04) + 0.05,
                y=expert_y + expert_height / 2,
                text="...",
                showarrow=False,
                font=dict(size=8, color=self.universal_colors['text']),
                row=row, col=col
            )

    def add_side_panel(self, fig: go.Figure, x: float, y: float, width: float, height: float,
                       title: str, components: List[str], config_values: Dict[str, Any],
                       row: int = 1, col: int = 1) -> None:
        """Add a side panel with component breakdown"""

        # Panel container with dashed border
        fig.add_shape(
            type="rect",
            x0=x, y0=y, x1=x + width, y1=y + height,
            fillcolor=self.universal_colors['callout_bg'],
            line=dict(color='gray', width=1, dash='dash'),
            layer="below",
            row=row, col=col
        )

        # Panel title
        fig.add_annotation(
            x=x + width / 2, y=y + height - 0.08,
            text=f"<b>{title}</b>",
            showarrow=False,
            font=dict(size=8, color=self.universal_colors['text']),
            row=row, col=col
        )

        # Component boxes
        component_height = 0.1
        start_y = y + height - 0.2

        for i, component in enumerate(components):
            comp_y = start_y - i * (component_height + 0.03)

            if "Linear" in component:
                color = self.universal_colors['output']
            elif "activation" in component.lower() or "SiLU" in component or "ReLU" in component:
                color = self.universal_colors['feedforward_moe'] if config_values['is_moe'] else self.universal_colors[
                    'feedforward_dense']
            else:
                color = self.universal_colors['embedding']

            self.add_layer_box(
                fig, x + 0.03, comp_y, width - 0.06, component_height,
                component, color, None, row, col, 6
            )

    def add_connection_arrow(self, fig: go.Figure, start_x: float, start_y: float,
                             end_x: float, end_y: float, row: int = 1, col: int = 1) -> None:
        """Add an arrow between layers"""
        fig.add_annotation(
            x=end_x, y=end_y,
            ax=start_x, ay=start_y,
            xref=f'x{col}' if col > 1 else 'x',
            yref=f'y{row}' if row > 1 else 'y',
            axref=f'x{col}' if col > 1 else 'x',
            ayref=f'y{row}' if row > 1 else 'y',
            showarrow=True,
            arrowhead=2,
            arrowsize=1,
            arrowwidth=1.5,
            arrowcolor='black'
        )

    def create_single_model_diagram(self, fig: go.Figure, model_name: str,
                                    config_values: Dict[str, Any], row: int = 1, col: int = 1) -> None:
        """Add a single model's architecture to the subplot with improved layout"""

        # Layout parameters
        base_x, base_y = 0.3, 0.2
        main_width, main_height = 2.2, 2.8
        layer_width, layer_height = 1.8, 0.2

        # Model title with size
        model_display_name = model_name.split('/')[-1] if '/' in model_name else model_name
        title_text = f"<b>{model_display_name}</b>"
        if config_values['estimated_size'] != "Unknown":
            title_text += f" ({config_values['estimated_size']})"

        fig.add_annotation(
            x=base_x + main_width / 2, y=base_y + main_height + 0.2,
            text=title_text,
            showarrow=False,
            font=dict(size=10, color=self.universal_colors['accent_blue']),
            row=row, col=col
        )

        # Outer container (main frame)
        self.add_container(
            fig, base_x - 0.1, base_y - 0.1, main_width + 0.2, main_height + 0.2,
            self.universal_colors['container_outer'], 2, row, col
        )

        # Inner container (colored by architecture type)
        inner_color = (self.universal_colors['moe_inner'] if config_values['is_moe']
                       else self.universal_colors['dense_inner'])
        self.add_container(
            fig, base_x + 0.1, base_y + 0.8, main_width - 0.2, main_height - 1.2,
            inner_color, 1, row, col
        )

        # Layer definitions with universal colors
        layers = [
            ('Token Embedding', base_y + 0.3, self.universal_colors['embedding'],
             f"Vocab: {config_values['vocab_size']:,}<br>Embedding dim: {config_values['hidden_size']}"),
            ('Layer Norm', base_y + 0.6, self.universal_colors['layer_norm'],
             'Input normalization'),
            (f'Multi-Head Attention\n({config_values["num_heads"]} heads)',
             base_y + 0.9, self.universal_colors['attention'],
             f"Heads: {config_values['num_heads']}<br>Hidden: {config_values['hidden_size']}<br>KV Heads: {config_values['kv_heads']}"),
            ('Layer Norm', base_y + 1.2, self.universal_colors['layer_norm'],
             'Post-attention norm'),
        ]

        # Add MoE or Dense FFN layer
        if config_values['is_moe']:
            layers.append((
                'MoE Feed Forward',
                base_y + 1.5, self.universal_colors['feedforward_moe'],
                f"Experts: {config_values['moe_params']['num_experts']}<br>Active per token: {config_values['moe_params']['experts_per_token']}<br>MoE intermediate: {config_values['moe_params']['moe_intermediate_size']}"
            ))
        else:
            layers.append((
                'Feed Forward Network',
                base_y + 1.5, self.universal_colors['feedforward_dense'],
                f"Intermediate size: {config_values['intermediate_size']}<br>Activation: {config_values['activation']}"
            ))

        layers.extend([
            ('Layer Norm', base_y + 1.8, self.universal_colors['layer_norm'],
             'Post-FFN normalization'),
            ('Output Projection', base_y + 2.1, self.universal_colors['output'],
             f"Projects to vocab: {config_values['vocab_size']:,}")
        ])

        # Add all layers
        layer_centers = []
        for layer_name, y_pos, color, hover_info in layers:
            layer_x = base_x + (main_width - layer_width) / 2

            self.add_layer_box(
                fig, layer_x, y_pos, layer_width, layer_height,
                layer_name, color, hover_info, row, col
            )

            layer_centers.append((layer_x + layer_width / 2, y_pos + layer_height / 2))

        # Add arrows between layers
        for i in range(len(layer_centers) - 1):
            start_x, start_y = layer_centers[i]
            end_x, end_y = layer_centers[i + 1]

            arrow_start_y = start_y + layer_height / 2
            arrow_end_y = end_y - layer_height / 2

            if arrow_end_y > arrow_start_y:
                self.add_connection_arrow(fig, start_x, arrow_start_y, end_x, arrow_end_y, row, col)

        # Add layer repetition indicator
        if isinstance(config_values['num_layers'], int) and config_values['num_layers'] > 1:
            fig.add_annotation(
                x=base_x - 0.05, y=base_y + 1.4,
                text=f"Γ—{config_values['num_layers']}<br>layers",
                showarrow=False,
                font=dict(size=7, color=self.universal_colors['text']),
                bgcolor=self.universal_colors['callout_bg'],
                bordercolor="black", borderwidth=1,
                row=row, col=col
            )

        # Add side panel for component details
        panel_x = base_x + main_width + 0.3
        panel_y = base_y + 1.5  # Moved up to avoid MoE visualization
        panel_width = 0.7
        panel_height = 0.8

        if config_values['is_moe']:
            # MoE side panel
            components = [
                "Linear layer",
                f"{config_values['activation'].upper()} activation",
                "Linear layer",
                "Router",
                f"{config_values['moe_params']['experts_per_token']} active experts"
            ]
            panel_title = "MoE Module"
        else:
            # Dense FFN side panel
            components = [
                "Linear layer",
                f"{config_values['activation'].upper()} activation",
                "Linear layer"
            ]
            panel_title = "FeedForward Module"

        self.add_side_panel(fig, panel_x, panel_y, panel_width, panel_height,
                            panel_title, components, config_values, row, col)

        # Add MoE router visualization if applicable
        if config_values['is_moe']:
            # Position router visualization below side panel with better spacing
            router_x = panel_x + 0.05
            router_y = panel_y - 0.5
            self.add_moe_router_visualization(fig, router_x, router_y, config_values, row, col)

    def add_callout(self, fig: go.Figure, point_x: float, point_y: float,
                    text_x: float, text_y: float, text: str, row: int = 1, col: int = 1) -> None:
        """Add a callout with leader line - arrow points FROM point TO text"""
        fig.add_annotation(
            x=text_x, y=text_y,  # Text position
            ax=point_x, ay=point_y,  # Arrow start position (the component being referenced)
            text=text,
            showarrow=True,
            arrowhead=2, arrowsize=1, arrowwidth=1,
            arrowcolor='gray',
            font=dict(size=7),
            bgcolor=self.universal_colors['callout_bg'],
            bordercolor="gray", borderwidth=1,
            xref=f'x{col}' if col > 1 else 'x',
            yref=f'y{row}' if row > 1 else 'y',
            axref=f'x{col}' if col > 1 else 'x',
            ayref=f'y{row}' if row > 1 else 'y'
        )

    def create_comparison_diagram(self, models_data: List[Tuple[str, Dict[str, Any]]]) -> go.Figure:
        """Create comparison diagram for multiple models"""

        num_models = len(models_data)
        if num_models == 0:
            return go.Figure()

        # Create subplots - always use single row layout
        if num_models == 1:
            fig = make_subplots(rows=1, cols=1, subplot_titles=[models_data[0][0]])
        elif num_models == 2:
            fig = make_subplots(rows=1, cols=2,
                                subplot_titles=[model[0] for model in models_data])
        else:  # 3 models
            fig = make_subplots(rows=1, cols=3,
                                subplot_titles=[model[0] for model in models_data])

        # Set up layout
        fig.update_layout(
            height=700,
            width=1200,
            showlegend=False,
            title_text="🧠 Model Architecture Comparison",
            title_x=0.5,
            title_font=dict(size=18)
        )

        # Add each model to its subplot
        for i, (model_name, config_values) in enumerate(models_data):
            row, col = 1, i + 1
            self.create_single_model_diagram(fig, model_name, config_values, row, col)

        # Update axes to hide ticks and labels - expanded range for callouts
        fig.update_xaxes(showgrid=False, showticklabels=False, zeroline=False, range=[0, 5.0])
        fig.update_yaxes(showgrid=False, showticklabels=False, zeroline=False, range=[-0.5, 3.5])

        return fig

    def generate_visualization(self, model_names: List[str]) -> Union[go.Figure, str]:
        """Generate visualization for given models"""

        # Filter out empty model names
        valid_models = [name.strip() for name in model_names if name and name.strip()]

        if not valid_models:
            return "Please enter at least one model name."

        models_data = []
        errors = []

        for model_name in valid_models:
            try:
                config = self.get_model_config(model_name)
                if config:
                    config_values = self.extract_config_values(config)
                    models_data.append((model_name, config_values))
                else:
                    errors.append(f"Could not load config for {model_name}")
            except Exception as e:
                errors.append(f"Error with {model_name}: {str(e)}")

        if not models_data:
            return f"❌ Could not load any models. Errors: {'; '.join(errors)}"

        if errors:
            logger.warning(f"Some models failed to load: {errors}")

        try:
            fig = self.create_comparison_diagram(models_data)
            return fig
        except Exception as e:
            return f"❌ Error generating diagram: {str(e)}"


def create_gradio_interface():
    """Create and configure the Gradio interface"""

    visualizer = PlotlyModelArchitectureVisualizer()

    def process_models(model1: str, model2: str = "", model3: str = "") -> Union[go.Figure, str]:
        """Process the model inputs and generate visualization"""
        models = [model1, model2, model3]
        return visualizer.generate_visualization(models)

    # Create the interface
    with gr.Blocks(
            title="🧠 Model Architecture Visualizer",
            theme=gr.themes.Soft(),
            css="""
        .gradio-container {
            max-width: 1200px !important;
        }
        .model-input {
            font-family: monospace;
        }
        """
    ) as demo:
        gr.Markdown("""
        # 🧠 Interactive Model Architecture Visualizer

        Compare up to 3 Hugging Face transformer models side-by-side! 
        Enter model IDs below to see their architecture diagrams with interactive features.

        ### πŸ“‹ How to Use

        1. **Enter Model IDs**: Use Hugging Face model identifiers (e.g., `moonshotai/Kimi-K2-Base`, `openai/gpt-oss-120b`, `deepseek-ai/DeepSeek-R1-0528`)
        2. **Compare Models**: Add up to 3 models to see them side-by-side
        3. **Explore Interactively**: Hover over components to see detailed specifications
        """)

        # Model inputs in a single row
        gr.Markdown("### πŸ“ Model Configuration")
        with gr.Row():
            model1 = gr.Textbox(
                label="Model 1 (Required)",
                placeholder="e.g., openai/gpt-oss-120b",
                value="openai/gpt-oss-120b",
                elem_classes=["model-input"]
            )

            model2 = gr.Textbox(
                label="Model 2 (Optional)",
                placeholder="e.g., moonshotai/Kimi-K2-Base",
                elem_classes=["model-input"]
            )

            model3 = gr.Textbox(
                label="Model 3 (Optional)",
                placeholder="e.g., deepseek-ai/DeepSeek-R1-0528",
                elem_classes=["model-input"]
            )

        with gr.Row():
            generate_btn = gr.Button("πŸš€ Generate Visualization", variant="primary", size="lg")
            clear_btn = gr.Button("πŸ—‘οΈ Clear", variant="secondary")

        # Visualization output - full width
        output_plot = gr.Plot(
            label="🧠 Architecture Visualization",
            show_label=True
        )

        # Event handlers
        generate_btn.click(
            fn=process_models,
            inputs=[model1, model2, model3],
            outputs=output_plot
        )

        clear_btn.click(
            fn=lambda: ("", "", "", None),
            outputs=[model1, model2, model3, output_plot]
        )

        # Auto-generate for default model
        demo.load(
            fn=lambda: process_models("openai/gpt-oss-120b"),
            outputs=output_plot
        )

        gr.Markdown("""Built with ❀️ using Plotly, Gradio, and Hugging Face Transformers""")

    return demo


if __name__ == "__main__":
    # Create and launch the app
    demo = create_gradio_interface()

    # For HuggingFace Spaces deployment
    demo.launch(
        share=False,
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True
    )