Spaces:
Running
Running
File size: 25,486 Bytes
56bbc8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 |
import gradio as gr
from typing import Dict, Any, Optional, List, Tuple, Union
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from transformers import AutoConfig
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class PlotlyModelArchitectureVisualizer:
def __init__(self, hf_token: Optional[str] = None):
self.config = None
self.hf_token = hf_token
# Universal color scheme - consistent across all models
self.universal_colors = {
'embedding': '#f8f9fa', # Light gray for embeddings
'layer_norm': '#e9ecef', # Light gray for layer norms
'attention': '#495057', # Dark gray for attention
'output': '#f8f9fa', # Light gray for output layers
'text': '#212529', # Dark text
'container_outer': '#dee2e6', # Outer container
'moe_inner': '#d4edda', # Green background for MoE models
'dense_inner': '#f8d7da', # Red background for dense models
'feedforward_moe': '#28a745', # Green for MoE FFN
'feedforward_dense': '#dc3545', # Red for dense FFN
'router': '#fd7e14', # Orange for router
'expert': '#20c997', # Teal for experts
'callout_bg': 'rgba(255,255,255,0.9)',
'accent_blue': '#007bff',
'accent_green': '#28a745',
'accent_red': '#dc3545'
}
def get_model_config(self, model_name: str) -> Dict[str, Any]:
"""Fetch model configuration from Hugging Face"""
try:
logger.info(f"Fetching config for {model_name}")
config = AutoConfig.from_pretrained(model_name, token=self.hf_token, trust_remote_code=True)
return config.to_dict()
except Exception as e:
logger.error(f"Error fetching config for {model_name}: {e}")
return {}
def extract_config_values(self, config: Dict[str, Any]) -> Dict[str, Any]:
"""Extract and normalize configuration values with architecture detection"""
# Detect model architecture type
model_type = config.get('model_type', 'unknown').lower()
is_moe = any(key in config for key in [
'num_experts', 'n_routed_experts', 'moe_intermediate_size',
'num_experts_per_tok', 'router_aux_loss_coef'
])
# Extract MoE-specific parameters
moe_params = {}
if is_moe:
moe_params = {
'num_experts': config.get('num_experts', config.get('n_routed_experts', 'N/A')),
'experts_per_token': config.get('num_experts_per_tok', 'N/A'),
'moe_intermediate_size': config.get('moe_intermediate_size', 'N/A'),
'router_aux_loss': config.get('router_aux_loss_coef', config.get('aux_loss_alpha', 'N/A')),
'shared_experts': config.get('n_shared_experts', 0)
}
# Calculate model size estimate (simplified)
hidden_size = config.get('hidden_size', config.get('d_model', config.get('n_embd', 0)))
num_layers = config.get('num_hidden_layers', config.get('n_layer', config.get('num_layers', 0)))
vocab_size = config.get('vocab_size', 0)
if isinstance(hidden_size, int) and isinstance(num_layers, int) and isinstance(vocab_size, int):
# Very rough parameter count estimation
if is_moe:
# MoE models are much larger but use fewer parameters per token
estimated_params = (hidden_size * num_layers * vocab_size) // 1000000 # Simplified
size_suffix = "B" if estimated_params > 1000 else "M"
estimated_params = estimated_params // 1000 if estimated_params > 1000 else estimated_params
else:
estimated_params = (hidden_size * num_layers * vocab_size) // 1000000
size_suffix = "B" if estimated_params > 1000 else "M"
estimated_params = estimated_params // 1000 if estimated_params > 1000 else estimated_params
else:
estimated_params = "Unknown"
size_suffix = ""
return {
'model_type': config.get('model_type', 'unknown'),
'hidden_size': hidden_size if hidden_size != 0 else 'N/A',
'num_layers': num_layers if num_layers != 0 else 'N/A',
'num_heads': config.get('num_attention_heads', config.get('n_head', config.get('num_heads', 'N/A'))),
'vocab_size': vocab_size if vocab_size != 0 else 'N/A',
'max_position': config.get('max_position_embeddings',
config.get('n_positions', config.get('max_seq_len', 'N/A'))),
'intermediate_size': config.get('intermediate_size',
config.get('d_ff', hidden_size if hidden_size != 0 else 'N/A')),
'is_moe': is_moe,
'moe_params': moe_params,
'estimated_size': f"{estimated_params}{size_suffix}" if estimated_params != "Unknown" else "Unknown",
'kv_heads': config.get('num_key_value_heads', config.get('num_heads', 'N/A')),
'head_dim': config.get('head_dim', config.get('qk_nope_head_dim', 'N/A')),
'activation': config.get('hidden_act', config.get('activation_function', 'N/A'))
}
def add_container(self, fig: go.Figure, x: float, y: float, width: float, height: float,
color: str, line_width: int = 1, row: int = 1, col: int = 1) -> None:
"""Add a container/background box"""
fig.add_shape(
type="rect",
x0=x, y0=y, x1=x + width, y1=y + height,
fillcolor=color,
line=dict(color='black', width=line_width),
layer="below",
row=row, col=col
)
def add_layer_box(self, fig: go.Figure, x: float, y: float, width: float, height: float,
text: str, color: str, hover_text: str = None, row: int = 1, col: int = 1,
text_size: int = 7) -> None:
"""Add a rounded rectangle representing a layer"""
# Add the box shape
fig.add_shape(
type="rect",
x0=x, y0=y, x1=x + width, y1=y + height,
fillcolor=color,
line=dict(color='black', width=1),
layer="below",
row=row, col=col
)
# Add text label
fig.add_annotation(
x=x + width / 2,
y=y + height / 2,
text=text,
showarrow=False,
font=dict(size=text_size, color=self.universal_colors['text']),
bgcolor=self.universal_colors['callout_bg'],
bordercolor="black",
borderwidth=1,
row=row, col=col
)
# Add invisible scatter point for hover functionality
if hover_text:
fig.add_trace(go.Scatter(
x=[x + width / 2],
y=[y + height / 2],
mode='markers',
marker=dict(size=12, opacity=0),
hovertemplate=f"<b>{text}</b><br>{hover_text}<extra></extra>",
showlegend=False,
name=text
), row=row, col=col)
def add_moe_router_visualization(self, fig: go.Figure, x: float, y: float,
config_values: Dict[str, Any], row: int = 1, col: int = 1) -> None:
"""Add MoE router and expert visualization with improved layout"""
moe_params = config_values['moe_params']
# Router box - positioned more centrally
router_width, router_height = 0.4, 0.12
router_x = x + 0.2 # Center it better within the available space
self.add_layer_box(
fig, router_x, y, router_width, router_height,
"Router", self.universal_colors['router'],
f"{moe_params['experts_per_token']} experts activated <br>from {moe_params['num_experts']} total",
row, col, 6
)
# Expert boxes - positioned with better spacing
expert_y = y - 0.25 # Closer to router
expert_width, expert_height = 0.18, 0.1
experts_to_show = min(3, int(moe_params['experts_per_token']) if isinstance(moe_params['experts_per_token'],
int) else 3)
# Center the experts under the router
total_expert_width = experts_to_show * expert_width + (experts_to_show - 1) * 0.04
experts_start_x = router_x + (router_width - total_expert_width) / 2
for i in range(experts_to_show):
expert_x = experts_start_x + i * (expert_width + 0.04)
self.add_layer_box(
fig, expert_x, expert_y, expert_width, expert_height,
f"Expert\n{i + 1}", self.universal_colors['expert'],
f"MoE intermediate size: {moe_params['moe_intermediate_size']}",
row, col, 5
)
# Arrow from router to expert - pointing downward
self.add_connection_arrow(
fig, router_x + router_width / 2, y,
expert_x + expert_width / 2, expert_y + expert_height, row, col
)
# Add "..." if more experts exist - positioned to the right
if experts_to_show < int(moe_params['experts_per_token']) if isinstance(moe_params['experts_per_token'],
int) else False:
fig.add_annotation(
x=experts_start_x + experts_to_show * (expert_width + 0.04) + 0.05,
y=expert_y + expert_height / 2,
text="...",
showarrow=False,
font=dict(size=8, color=self.universal_colors['text']),
row=row, col=col
)
def add_side_panel(self, fig: go.Figure, x: float, y: float, width: float, height: float,
title: str, components: List[str], config_values: Dict[str, Any],
row: int = 1, col: int = 1) -> None:
"""Add a side panel with component breakdown"""
# Panel container with dashed border
fig.add_shape(
type="rect",
x0=x, y0=y, x1=x + width, y1=y + height,
fillcolor=self.universal_colors['callout_bg'],
line=dict(color='gray', width=1, dash='dash'),
layer="below",
row=row, col=col
)
# Panel title
fig.add_annotation(
x=x + width / 2, y=y + height - 0.08,
text=f"<b>{title}</b>",
showarrow=False,
font=dict(size=8, color=self.universal_colors['text']),
row=row, col=col
)
# Component boxes
component_height = 0.1
start_y = y + height - 0.2
for i, component in enumerate(components):
comp_y = start_y - i * (component_height + 0.03)
if "Linear" in component:
color = self.universal_colors['output']
elif "activation" in component.lower() or "SiLU" in component or "ReLU" in component:
color = self.universal_colors['feedforward_moe'] if config_values['is_moe'] else self.universal_colors[
'feedforward_dense']
else:
color = self.universal_colors['embedding']
self.add_layer_box(
fig, x + 0.03, comp_y, width - 0.06, component_height,
component, color, None, row, col, 6
)
def add_connection_arrow(self, fig: go.Figure, start_x: float, start_y: float,
end_x: float, end_y: float, row: int = 1, col: int = 1) -> None:
"""Add an arrow between layers"""
fig.add_annotation(
x=end_x, y=end_y,
ax=start_x, ay=start_y,
xref=f'x{col}' if col > 1 else 'x',
yref=f'y{row}' if row > 1 else 'y',
axref=f'x{col}' if col > 1 else 'x',
ayref=f'y{row}' if row > 1 else 'y',
showarrow=True,
arrowhead=2,
arrowsize=1,
arrowwidth=1.5,
arrowcolor='black'
)
def create_single_model_diagram(self, fig: go.Figure, model_name: str,
config_values: Dict[str, Any], row: int = 1, col: int = 1) -> None:
"""Add a single model's architecture to the subplot with improved layout"""
# Layout parameters
base_x, base_y = 0.3, 0.2
main_width, main_height = 2.2, 2.8
layer_width, layer_height = 1.8, 0.2
# Model title with size
model_display_name = model_name.split('/')[-1] if '/' in model_name else model_name
title_text = f"<b>{model_display_name}</b>"
if config_values['estimated_size'] != "Unknown":
title_text += f" ({config_values['estimated_size']})"
fig.add_annotation(
x=base_x + main_width / 2, y=base_y + main_height + 0.2,
text=title_text,
showarrow=False,
font=dict(size=10, color=self.universal_colors['accent_blue']),
row=row, col=col
)
# Outer container (main frame)
self.add_container(
fig, base_x - 0.1, base_y - 0.1, main_width + 0.2, main_height + 0.2,
self.universal_colors['container_outer'], 2, row, col
)
# Inner container (colored by architecture type)
inner_color = (self.universal_colors['moe_inner'] if config_values['is_moe']
else self.universal_colors['dense_inner'])
self.add_container(
fig, base_x + 0.1, base_y + 0.8, main_width - 0.2, main_height - 1.2,
inner_color, 1, row, col
)
# Layer definitions with universal colors
layers = [
('Token Embedding', base_y + 0.3, self.universal_colors['embedding'],
f"Vocab: {config_values['vocab_size']:,}<br>Embedding dim: {config_values['hidden_size']}"),
('Layer Norm', base_y + 0.6, self.universal_colors['layer_norm'],
'Input normalization'),
(f'Multi-Head Attention\n({config_values["num_heads"]} heads)',
base_y + 0.9, self.universal_colors['attention'],
f"Heads: {config_values['num_heads']}<br>Hidden: {config_values['hidden_size']}<br>KV Heads: {config_values['kv_heads']}"),
('Layer Norm', base_y + 1.2, self.universal_colors['layer_norm'],
'Post-attention norm'),
]
# Add MoE or Dense FFN layer
if config_values['is_moe']:
layers.append((
'MoE Feed Forward',
base_y + 1.5, self.universal_colors['feedforward_moe'],
f"Experts: {config_values['moe_params']['num_experts']}<br>Active per token: {config_values['moe_params']['experts_per_token']}<br>MoE intermediate: {config_values['moe_params']['moe_intermediate_size']}"
))
else:
layers.append((
'Feed Forward Network',
base_y + 1.5, self.universal_colors['feedforward_dense'],
f"Intermediate size: {config_values['intermediate_size']}<br>Activation: {config_values['activation']}"
))
layers.extend([
('Layer Norm', base_y + 1.8, self.universal_colors['layer_norm'],
'Post-FFN normalization'),
('Output Projection', base_y + 2.1, self.universal_colors['output'],
f"Projects to vocab: {config_values['vocab_size']:,}")
])
# Add all layers
layer_centers = []
for layer_name, y_pos, color, hover_info in layers:
layer_x = base_x + (main_width - layer_width) / 2
self.add_layer_box(
fig, layer_x, y_pos, layer_width, layer_height,
layer_name, color, hover_info, row, col
)
layer_centers.append((layer_x + layer_width / 2, y_pos + layer_height / 2))
# Add arrows between layers
for i in range(len(layer_centers) - 1):
start_x, start_y = layer_centers[i]
end_x, end_y = layer_centers[i + 1]
arrow_start_y = start_y + layer_height / 2
arrow_end_y = end_y - layer_height / 2
if arrow_end_y > arrow_start_y:
self.add_connection_arrow(fig, start_x, arrow_start_y, end_x, arrow_end_y, row, col)
# Add layer repetition indicator
if isinstance(config_values['num_layers'], int) and config_values['num_layers'] > 1:
fig.add_annotation(
x=base_x - 0.05, y=base_y + 1.4,
text=f"Γ{config_values['num_layers']}<br>layers",
showarrow=False,
font=dict(size=7, color=self.universal_colors['text']),
bgcolor=self.universal_colors['callout_bg'],
bordercolor="black", borderwidth=1,
row=row, col=col
)
# Add side panel for component details
panel_x = base_x + main_width + 0.3
panel_y = base_y + 1.5 # Moved up to avoid MoE visualization
panel_width = 0.7
panel_height = 0.8
if config_values['is_moe']:
# MoE side panel
components = [
"Linear layer",
f"{config_values['activation'].upper()} activation",
"Linear layer",
"Router",
f"{config_values['moe_params']['experts_per_token']} active experts"
]
panel_title = "MoE Module"
else:
# Dense FFN side panel
components = [
"Linear layer",
f"{config_values['activation'].upper()} activation",
"Linear layer"
]
panel_title = "FeedForward Module"
self.add_side_panel(fig, panel_x, panel_y, panel_width, panel_height,
panel_title, components, config_values, row, col)
# Add MoE router visualization if applicable
if config_values['is_moe']:
# Position router visualization below side panel with better spacing
router_x = panel_x + 0.05
router_y = panel_y - 0.5
self.add_moe_router_visualization(fig, router_x, router_y, config_values, row, col)
def add_callout(self, fig: go.Figure, point_x: float, point_y: float,
text_x: float, text_y: float, text: str, row: int = 1, col: int = 1) -> None:
"""Add a callout with leader line - arrow points FROM point TO text"""
fig.add_annotation(
x=text_x, y=text_y, # Text position
ax=point_x, ay=point_y, # Arrow start position (the component being referenced)
text=text,
showarrow=True,
arrowhead=2, arrowsize=1, arrowwidth=1,
arrowcolor='gray',
font=dict(size=7),
bgcolor=self.universal_colors['callout_bg'],
bordercolor="gray", borderwidth=1,
xref=f'x{col}' if col > 1 else 'x',
yref=f'y{row}' if row > 1 else 'y',
axref=f'x{col}' if col > 1 else 'x',
ayref=f'y{row}' if row > 1 else 'y'
)
def create_comparison_diagram(self, models_data: List[Tuple[str, Dict[str, Any]]]) -> go.Figure:
"""Create comparison diagram for multiple models"""
num_models = len(models_data)
if num_models == 0:
return go.Figure()
# Create subplots - always use single row layout
if num_models == 1:
fig = make_subplots(rows=1, cols=1, subplot_titles=[models_data[0][0]])
elif num_models == 2:
fig = make_subplots(rows=1, cols=2,
subplot_titles=[model[0] for model in models_data])
else: # 3 models
fig = make_subplots(rows=1, cols=3,
subplot_titles=[model[0] for model in models_data])
# Set up layout
fig.update_layout(
height=700,
width=1200,
showlegend=False,
title_text="π§ Model Architecture Comparison",
title_x=0.5,
title_font=dict(size=18)
)
# Add each model to its subplot
for i, (model_name, config_values) in enumerate(models_data):
row, col = 1, i + 1
self.create_single_model_diagram(fig, model_name, config_values, row, col)
# Update axes to hide ticks and labels - expanded range for callouts
fig.update_xaxes(showgrid=False, showticklabels=False, zeroline=False, range=[0, 5.0])
fig.update_yaxes(showgrid=False, showticklabels=False, zeroline=False, range=[-0.5, 3.5])
return fig
def generate_visualization(self, model_names: List[str]) -> Union[go.Figure, str]:
"""Generate visualization for given models"""
# Filter out empty model names
valid_models = [name.strip() for name in model_names if name and name.strip()]
if not valid_models:
return "Please enter at least one model name."
models_data = []
errors = []
for model_name in valid_models:
try:
config = self.get_model_config(model_name)
if config:
config_values = self.extract_config_values(config)
models_data.append((model_name, config_values))
else:
errors.append(f"Could not load config for {model_name}")
except Exception as e:
errors.append(f"Error with {model_name}: {str(e)}")
if not models_data:
return f"β Could not load any models. Errors: {'; '.join(errors)}"
if errors:
logger.warning(f"Some models failed to load: {errors}")
try:
fig = self.create_comparison_diagram(models_data)
return fig
except Exception as e:
return f"β Error generating diagram: {str(e)}"
def create_gradio_interface():
"""Create and configure the Gradio interface"""
visualizer = PlotlyModelArchitectureVisualizer()
def process_models(model1: str, model2: str = "", model3: str = "") -> Union[go.Figure, str]:
"""Process the model inputs and generate visualization"""
models = [model1, model2, model3]
return visualizer.generate_visualization(models)
# Create the interface
with gr.Blocks(
title="π§ Model Architecture Visualizer",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1200px !important;
}
.model-input {
font-family: monospace;
}
"""
) as demo:
gr.Markdown("""
# π§ Interactive Model Architecture Visualizer
Compare up to 3 Hugging Face transformer models side-by-side!
Enter model IDs below to see their architecture diagrams with interactive features.
### π How to Use
1. **Enter Model IDs**: Use Hugging Face model identifiers (e.g., `moonshotai/Kimi-K2-Base`, `openai/gpt-oss-120b`, `deepseek-ai/DeepSeek-R1-0528`)
2. **Compare Models**: Add up to 3 models to see them side-by-side
3. **Explore Interactively**: Hover over components to see detailed specifications
""")
# Model inputs in a single row
gr.Markdown("### π Model Configuration")
with gr.Row():
model1 = gr.Textbox(
label="Model 1 (Required)",
placeholder="e.g., openai/gpt-oss-120b",
value="openai/gpt-oss-120b",
elem_classes=["model-input"]
)
model2 = gr.Textbox(
label="Model 2 (Optional)",
placeholder="e.g., moonshotai/Kimi-K2-Base",
elem_classes=["model-input"]
)
model3 = gr.Textbox(
label="Model 3 (Optional)",
placeholder="e.g., deepseek-ai/DeepSeek-R1-0528",
elem_classes=["model-input"]
)
with gr.Row():
generate_btn = gr.Button("π Generate Visualization", variant="primary", size="lg")
clear_btn = gr.Button("ποΈ Clear", variant="secondary")
# Visualization output - full width
output_plot = gr.Plot(
label="π§ Architecture Visualization",
show_label=True
)
# Event handlers
generate_btn.click(
fn=process_models,
inputs=[model1, model2, model3],
outputs=output_plot
)
clear_btn.click(
fn=lambda: ("", "", "", None),
outputs=[model1, model2, model3, output_plot]
)
# Auto-generate for default model
demo.load(
fn=lambda: process_models("openai/gpt-oss-120b"),
outputs=output_plot
)
gr.Markdown("""Built with β€οΈ using Plotly, Gradio, and Hugging Face Transformers""")
return demo
if __name__ == "__main__":
# Create and launch the app
demo = create_gradio_interface()
# For HuggingFace Spaces deployment
demo.launch(
share=False,
server_name="0.0.0.0",
server_port=7860,
show_error=True
) |