Spaces:
Running
Running
File size: 7,402 Bytes
7a920b1 5515ef5 7a920b1 b32f568 7a920b1 b32f568 7a920b1 b32f568 7a920b1 b32f568 7a920b1 5515ef5 7a920b1 5515ef5 7a920b1 b32f568 7a920b1 b32f568 7a920b1 b32f568 7a920b1 5515ef5 b32f568 5515ef5 b32f568 5515ef5 b32f568 5515ef5 b32f568 5515ef5 b32f568 5515ef5 7a920b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import os
from openai import OpenAI, AsyncOpenAI
from pydantic import BaseModel, Field
from typing import Optional, Literal
from src.modules.constants import PROMPT_LIBRARY
SYSTEM_PROMPT = """
You are an e-commerce fashion catalog assistant.
Classify products and generate detailed descriptions based on images.
"""
USER_PROMPT = """
Analyze this fashion product image and provide:
1) Master category, 2) Gender, 3) Sub-category, and 4) A detailed description.
"""
class ProductClassification(BaseModel):
"""Structured output model for fashion product classification and description"""
master_category: Literal["Footwear", "Accessories", "Apparel", "Personal Care"] = (
Field(description="The master category of the product")
)
gender: Literal["Men", "Women", "Unisex", "Boys", "Girls"] = Field(
description="The target gender for the product"
)
sub_category: Literal[
"Sandal",
"Scarves",
"Shoes",
"Watches",
"Innerwear",
"Topwear",
"Belts",
"Bags",
"Flip Flops",
"Nails",
"Bottomwear",
"Fragrance",
"Wallets",
"Jewellery",
"Loungewear and Nightwear",
"Socks",
"Headwear",
"Lips",
"Saree",
"Ties",
"Accessories",
"Eyewear",
"Dress",
"Skin Care",
"Stoles",
"Makeup",
"Cufflinks",
"Skin",
"Hair",
"Apparel Set",
"Water Bottle",
"Eyes",
"Shoe Accessories",
"Umbrellas",
"Mufflers",
"Beauty Accessories",
"Gloves",
"Sports Accessories",
"Perfumes",
"Bath and Body",
] = Field(description="The specific sub-category of the product")
description: str = Field(
description="A detailed description of the product based on the image"
)
def analyze_product_image(
image_url: str,
model: str = "accounts/fireworks/models/qwen2p5-vl-72b-instruct",
api_key: Optional[str] = None,
provider: str = "Fireworks",
prompt_style: Optional[str] = None,
) -> ProductClassification:
"""
Analyze a fashion product image using VLM with structured output
Args:
image_url: URL or base64-encoded image string (with data:image prefix)
model: Model to use for inference (default: Qwen2.5 VL 72B)
api_key: Fireworks API key (defaults to FIREWORKS_API_KEY env variable)
provider: Provider to use for inference (default: Fireworks)
prompt_style: Prompt style from library (concise, descriptive, explanatory). Defaults to fallback prompts.
Returns:
ProductClassification: Structured classification and description
"""
if provider.lower() in ["fireworks", "fireworksai"]:
client = OpenAI(
api_key=api_key or os.getenv("FIREWORKS_API_KEY"),
base_url="https://api.fireworks.ai/inference/v1",
)
elif provider.lower() == "openai":
client = OpenAI(
api_key=api_key or os.getenv("OPENAI_API_KEY"),
)
else:
raise ValueError(f"Unknown provider: {provider}")
# Get prompts from library or use defaults
if prompt_style and prompt_style in PROMPT_LIBRARY:
system_prompt = PROMPT_LIBRARY[prompt_style]["system"]
user_prompt = PROMPT_LIBRARY[prompt_style]["user"]
else:
system_prompt = SYSTEM_PROMPT
user_prompt = USER_PROMPT
# Call the API with structured output
completion = client.beta.chat.completions.parse(
model=model,
messages=[
{"role": "system", "content": system_prompt},
{
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": image_url}},
{"type": "text", "text": user_prompt},
],
},
],
response_format=ProductClassification,
)
# Extract and return the structured output
return completion.choices[0].message.parsed
async def analyze_product_image_async(
image_url: str,
model: str = "accounts/fireworks/models/qwen2p5-vl-72b-instruct",
api_key: Optional[str] = None,
provider: str = "Fireworks",
prompt_style: Optional[str] = None,
) -> ProductClassification:
"""
Async version of analyze_product_image for concurrent processing
Args:
image_url: URL or base64-encoded image string (with data:image prefix)
model: Model to use for inference (default: Qwen2.5 VL 72B)
api_key: API key (defaults to provider-specific env variable)
provider: Provider to use for inference (default: Fireworks)
prompt_style: Prompt style from library (concise, descriptive, explanatory). Defaults to fallback prompts.
Returns:
ProductClassification: Structured classification and description
"""
if provider.lower() in ["fireworks", "fireworksai"]:
client = AsyncOpenAI(
api_key=api_key or os.getenv("FIREWORKS_API_KEY"),
base_url="https://api.fireworks.ai/inference/v1",
)
elif provider.lower() == "openai":
client = AsyncOpenAI(
api_key=api_key or os.getenv("OPENAI_API_KEY"),
)
else:
raise ValueError(f"Unknown provider: {provider}")
# Get prompts from library or use defaults
if prompt_style and prompt_style in PROMPT_LIBRARY:
system_prompt = PROMPT_LIBRARY[prompt_style]["system"]
user_prompt = PROMPT_LIBRARY[prompt_style]["user"]
else:
system_prompt = SYSTEM_PROMPT
user_prompt = USER_PROMPT
# Call the API with structured output
completion = await client.beta.chat.completions.parse(
model=model,
messages=[
{"role": "system", "content": system_prompt},
{
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": image_url}},
{"type": "text", "text": user_prompt},
],
},
],
response_format=ProductClassification,
)
# Extract and return the structured output
return completion.choices[0].message.parsed
def batch_analyze_products(
image_urls: list[str],
model: str = "accounts/fireworks/models/qwen2p5-vl-72b-instruct",
api_key: Optional[str] = None,
base_url: str = "https://api.fireworks.ai/inference/v1",
) -> list[Optional[ProductClassification]]:
"""
Analyze multiple fashion product images
Args:
image_urls: List of image URLs or base64-encoded strings
model: Model to use for inference
api_key: Fireworks API key
base_url: API base URL
Returns:
list[Optional[ProductClassification]]: List of structured classifications (None for failed analyses)
"""
results = []
for idx, image_url in enumerate(image_urls):
try:
result = analyze_product_image(
image_url=image_url, model=model, api_key=api_key, base_url=base_url
)
results.append(result)
print(f"Processed image {idx + 1}/{len(image_urls)}")
except Exception as e:
print(f"Error processing image {idx + 1}: {e}")
results.append(None)
return results
|