File size: 5,089 Bytes
71dda47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "import sys, os\n",
    "import gradio as gr\n",
    "import numpy as np\n",
    "sys.path.append('stylegan3')\n",
    "import utils\n",
    "\n",
    "def to_uint8(im, ndim=2):\n",
    "    im -= np.min(im)\n",
    "    im /= np.max(im)\n",
    "    im *= 255.\n",
    "    im = np.asarray(im, dtype=np.uint8)\n",
    "    if ndim == 3:    \n",
    "        if im.ndim == 2:\n",
    "            im = np.expand_dims(im, axis=-1)\n",
    "        elif im.ndim == 3:\n",
    "            if im.shape[0] == 1: \n",
    "                np.transpose(im, (1,2,0))\n",
    "        im = np.tile(im, (1,1,3)) #make fake RGB\n",
    "        return im\n",
    "    elif ndim ==2:\n",
    "        if im.ndim == 2:\n",
    "            return im\n",
    "        if im.ndim == 3:\n",
    "            if im.shape[0] == 1:  #[1, H, W]\n",
    "                return im[0,...]\n",
    "            elif im.shape[2] == 1: #[H, W, 1]\n",
    "                return im[...,0]\n",
    "            else:\n",
    "                raise AssertionError(f\"Unexpected image passed to to_uint8 with shape: {np.shape(im)}.\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running on local URL:  http://127.0.0.1:7868\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "2022-10-11 17:33:10.390 INFO    paramiko.transport: Connected (version 2.0, client OpenSSH_7.6p1)\n",
      "2022-10-11 17:33:11.271 INFO    paramiko.transport: Authentication (publickey) successful!\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running on public URL: https://23528.gradio.app\n",
      "\n",
      "This share link expires in 72 hours. For free permanent hosting, check out Spaces: https://huggingface.co/spaces\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"https://23528.gradio.app\" width=\"900\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Tip: The inputs and outputs flagged by the users are stored in the flagging directory, specified by the flagging_dir= kwarg. You can view this data through the interface by setting the examples= kwarg to the flagging directory; for example gr.Interface(..., examples='flagged')\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "(<gradio.routes.App at 0x7fcded9da880>,\n",
       " 'http://127.0.0.1:7868/',\n",
       " 'https://23528.gradio.app')"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "\n",
    "\n",
    "in_gpu = False\n",
    "num_images = 1\n",
    "G = utils.load_default_gen(in_gpu=in_gpu)\n",
    "sampler = utils.SampleFromGAN(G=G, z_shp=[num_images, G.z_dim], in_gpu=in_gpu)\n",
    "\n",
    "def sample_GAN():\n",
    "    im = sampler()\n",
    "    im = im.numpy()\n",
    "    im = np.transpose(im, (1,2,0))\n",
    "    im = np.squeeze(im) #if single channel (yes), drop it.\n",
    "    # print(f\"sample_linearBP: im shape: {im.shape}; min: {np.min(im)}, max: {np.max(im)}.\")\n",
    "    im = to_uint8(im, ndim=2)\n",
    "    # print(f'1. uint image shape: {im.shape}')\n",
    "    return im\n",
    "\n",
    "\n",
    "title=\"Generate fake linear array images\"\n",
    "description=\"Generate fake linear array images.\"\n",
    "\n",
    "with gr.Blocks() as demo:\n",
    "    gr.Markdown(description)\n",
    "    with gr.Row():\n",
    "        with gr.Column(scale=2):\n",
    "            button_gen = gr.Button(\"Generate fake linear image\")\n",
    "        with gr.Column(scale=2):\n",
    "            output_im = gr.Image(type=\"numpy\", shape=(256, 256), image_mode=\"L\", label=\"fake image\", interactive=False) #grayscale image\n",
    "    button_gen.click(sample_GAN, inputs=None, outputs=output_im)\n",
    "    \n",
    "demo.launch(share=True, show_tips=True, enable_queue=True)\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3.9.0 ('torch')",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.0"
  },
  "orig_nbformat": 4,
  "vscode": {
   "interpreter": {
    "hash": "d9a708e2b965f26293af085a2040b513f9ca1674b4051c9a67720a0b5ff04f14"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}