Spaces:
Sleeping
Sleeping
File size: 11,466 Bytes
6064c9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import torch, numpy, itertools
import torch.nn as nn
from collections import OrderedDict
def print_network(net, verbose=False):
num_params = 0
for param in net.parameters():
num_params += param.numel()
if verbose:
print(net)
print('Total number of parameters: {:3.3f} M'.format(num_params / 1e6))
def from_pth_file(filename):
'''
Instantiate from a pth file.
'''
state_dict = torch.load(filename)
if 'state_dict' in state_dict:
state_dict = state_dict['state_dict']
# Convert old version of parameter names
if 'features.0.conv.weight' in state_dict:
state_dict = state_dict_from_old_pt_dict(state_dict)
sizes = sizes_from_state_dict(state_dict)
result = ProgressiveGenerator(sizes=sizes)
result.load_state_dict(state_dict)
return result
###############################################################################
# Modules
###############################################################################
class ProgressiveGenerator(nn.Sequential):
def __init__(self, resolution=None, sizes=None, modify_sequence=None,
output_tanh=False):
'''
A pytorch progessive GAN generator that can be converted directly
from either a tensorflow model or a theano model. It consists of
a sequence of convolutional layers, organized in pairs, with an
upsampling and reduction of channels at every other layer; and
then finally followed by an output layer that reduces it to an
RGB [-1..1] image.
The network can be given more layers to increase the output
resolution. The sizes argument indicates the fieature depth at
each upsampling, starting with the input z: [input-dim, 4x4-depth,
8x8-depth, 16x16-depth...]. The output dimension is 2 * 2**len(sizes)
Some default architectures can be selected by supplying the
resolution argument instead.
The optional modify_sequence function can be used to transform the
sequence of layers before the network is constructed.
If output_tanh is set to True, the network applies a tanh to clamp
the output to [-1,1] before output; otherwise the output is unclamped.
'''
assert (resolution is None) != (sizes is None)
if sizes is None:
sizes = {
8: [512, 512, 512],
16: [512, 512, 512, 512],
32: [512, 512, 512, 512, 256],
64: [512, 512, 512, 512, 256, 128],
128: [512, 512, 512, 512, 256, 128, 64],
256: [512, 512, 512, 512, 256, 128, 64, 32],
1024: [512, 512, 512, 512, 512, 256, 128, 64, 32, 16]
}[resolution]
# Follow the schedule of upsampling given by sizes.
# layers are called: layer1, layer2, etc; then output_128x128
sequence = []
def add_d(layer, name=None):
if name is None:
name = 'layer%d' % (len(sequence) + 1)
sequence.append((name, layer))
add_d(NormConvBlock(sizes[0], sizes[1], kernel_size=4, padding=3))
add_d(NormConvBlock(sizes[1], sizes[1], kernel_size=3, padding=1))
for i, (si, so) in enumerate(zip(sizes[1:-1], sizes[2:])):
add_d(NormUpscaleConvBlock(si, so, kernel_size=3, padding=1))
add_d(NormConvBlock(so, so, kernel_size=3, padding=1))
# Create an output layer. During training, the progressive GAN
# learns several such output layers for various resolutions; we
# just include the last (highest resolution) one.
dim = 4 * (2 ** (len(sequence) // 2 - 1))
add_d(OutputConvBlock(sizes[-1], tanh=output_tanh),
name='output_%dx%d' % (dim, dim))
# Allow the sequence to be modified
if modify_sequence is not None:
sequence = modify_sequence(sequence)
super().__init__(OrderedDict(sequence))
def forward(self, x):
# Convert vector input to 1x1 featuremap.
x = x.view(x.shape[0], x.shape[1], 1, 1)
return super().forward(x)
class PixelNormLayer(nn.Module):
def __init__(self):
super(PixelNormLayer, self).__init__()
def forward(self, x):
return x / torch.sqrt(torch.mean(x**2, dim=1, keepdim=True) + 1e-8)
class DoubleResolutionLayer(nn.Module):
def forward(self, x):
x = nn.functional.interpolate(x, scale_factor=2, mode='nearest')
return x
class WScaleLayer(nn.Module):
def __init__(self, size, fan_in, gain=numpy.sqrt(2)):
super(WScaleLayer, self).__init__()
self.scale = gain / numpy.sqrt(fan_in) # No longer a parameter
self.b = nn.Parameter(torch.randn(size))
self.size = size
def forward(self, x):
x_size = x.size()
x = x * self.scale + self.b.view(1, -1, 1, 1).expand(
x_size[0], self.size, x_size[2], x_size[3])
return x
class NormConvBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, padding):
super(NormConvBlock, self).__init__()
self.norm = PixelNormLayer()
self.conv = nn.Conv2d(
in_channels, out_channels, kernel_size, 1, padding, bias=False)
self.wscale = WScaleLayer(out_channels, in_channels,
gain=numpy.sqrt(2) / kernel_size)
self.relu = nn.LeakyReLU(inplace=True, negative_slope=0.2)
def forward(self, x):
x = self.norm(x)
x = self.conv(x)
x = self.relu(self.wscale(x))
return x
class NormUpscaleConvBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, padding):
super(NormUpscaleConvBlock, self).__init__()
self.norm = PixelNormLayer()
self.up = DoubleResolutionLayer()
self.conv = nn.Conv2d(
in_channels, out_channels, kernel_size, 1, padding, bias=False)
self.wscale = WScaleLayer(out_channels, in_channels,
gain=numpy.sqrt(2) / kernel_size)
self.relu = nn.LeakyReLU(inplace=True, negative_slope=0.2)
def forward(self, x):
x = self.norm(x)
x = self.up(x)
x = self.conv(x)
x = self.relu(self.wscale(x))
return x
class OutputConvBlock(nn.Module):
def __init__(self, in_channels, tanh=False):
super().__init__()
self.norm = PixelNormLayer()
self.conv = nn.Conv2d(
in_channels, 3, kernel_size=1, padding=0, bias=False)
self.wscale = WScaleLayer(3, in_channels, gain=1)
self.clamp = nn.Hardtanh() if tanh else (lambda x: x)
def forward(self, x):
x = self.norm(x)
x = self.conv(x)
x = self.wscale(x)
x = self.clamp(x)
return x
###############################################################################
# Conversion
###############################################################################
def from_tf_parameters(parameters):
'''
Instantiate from tensorflow variables.
'''
state_dict = state_dict_from_tf_parameters(parameters)
sizes = sizes_from_state_dict(state_dict)
result = ProgressiveGenerator(sizes=sizes)
result.load_state_dict(state_dict)
return result
def from_old_pt_dict(parameters):
'''
Instantiate from old pytorch state dict.
'''
state_dict = state_dict_from_old_pt_dict(parameters)
sizes = sizes_from_state_dict(state_dict)
result = ProgressiveGenerator(sizes=sizes)
result.load_state_dict(state_dict)
return result
def sizes_from_state_dict(params):
'''
In a progressive GAN, the number of channels can change after each
upsampling. This function reads the state dict to figure the
number of upsamplings and the channel depth of each filter.
'''
sizes = []
for i in itertools.count():
pt_layername = 'layer%d' % (i + 1)
try:
weight = params['%s.conv.weight' % pt_layername]
except KeyError:
break
if i == 0:
sizes.append(weight.shape[1])
if i % 2 == 0:
sizes.append(weight.shape[0])
return sizes
def state_dict_from_tf_parameters(parameters):
'''
Conversion from tensorflow parameters
'''
def torch_from_tf(data):
return torch.from_numpy(data.eval())
params = dict(parameters)
result = {}
sizes = []
for i in itertools.count():
resolution = 4 * (2 ** (i // 2))
# Translate parameter names. For example:
# 4x4/Dense/weight -> layer1.conv.weight
# 32x32/Conv0_up/weight -> layer7.conv.weight
# 32x32/Conv1/weight -> layer8.conv.weight
tf_layername = '%dx%d/%s' % (resolution, resolution,
'Dense' if i == 0 else 'Conv' if i == 1 else
'Conv0_up' if i % 2 == 0 else 'Conv1')
pt_layername = 'layer%d' % (i + 1)
# Stop looping when we run out of parameters.
try:
weight = torch_from_tf(params['%s/weight' % tf_layername])
except KeyError:
break
# Transpose convolution weights into pytorch format.
if i == 0:
# Convert dense layer to 4x4 convolution
weight = weight.view(weight.shape[0], weight.shape[1] // 16,
4, 4).permute(1, 0, 2, 3).flip(2, 3)
sizes.append(weight.shape[0])
elif i % 2 == 0:
# Convert inverse convolution to convolution
weight = weight.permute(2, 3, 0, 1).flip(2, 3)
else:
# Ordinary Conv2d conversion.
weight = weight.permute(3, 2, 0, 1)
sizes.append(weight.shape[1])
result['%s.conv.weight' % (pt_layername)] = weight
# Copy bias vector.
bias = torch_from_tf(params['%s/bias' % tf_layername])
result['%s.wscale.b' % (pt_layername)] = bias
# Copy just finest-grained ToRGB output layers. For example:
# ToRGB_lod0/weight -> output.conv.weight
i -= 1
resolution = 4 * (2 ** (i // 2))
tf_layername = 'ToRGB_lod0'
pt_layername = 'output_%dx%d' % (resolution, resolution)
result['%s.conv.weight' % pt_layername] = torch_from_tf(
params['%s/weight' % tf_layername]).permute(3, 2, 0, 1)
result['%s.wscale.b' % pt_layername] = torch_from_tf(
params['%s/bias' % tf_layername])
# Return parameters
return result
def state_dict_from_old_pt_dict(params):
'''
Conversion from the old pytorch model layer names.
'''
result = {}
sizes = []
for i in itertools.count():
old_layername = 'features.%d' % i
pt_layername = 'layer%d' % (i + 1)
try:
weight = params['%s.conv.weight' % (old_layername)]
except KeyError:
break
if i == 0:
sizes.append(weight.shape[0])
if i % 2 == 0:
sizes.append(weight.shape[1])
result['%s.conv.weight' % (pt_layername)] = weight
result['%s.wscale.b' % (pt_layername)] = params[
'%s.wscale.b' % (old_layername)]
# Copy the output layers.
i -= 1
resolution = 4 * (2 ** (i // 2))
pt_layername = 'output_%dx%d' % (resolution, resolution)
result['%s.conv.weight' % pt_layername] = params['output.conv.weight']
result['%s.wscale.b' % pt_layername] = params['output.wscale.b']
# Return parameters and also network architecture sizes.
return result
|