File size: 33,738 Bytes
6064c9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "name": "ClothingGAN-Demo.ipynb",
      "provenance": []
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    },
    "accelerator": "GPU"
  },
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Bm8iDDKC1LZo"
      },
      "source": [
        "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/mfrashad/ClothingGAN/blob/master/ClothingGAN_Demo.ipynb)\n",
        "# Clothing GAN demo\n",
        "Notebook by [@mfrashad](https://mfrashad.com)\n",
        "\n",
        "\n",
        "<br>\n",
        "Make sure runtime type is GPU"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 200
        },
        "cellView": "form",
        "id": "Kj8mGkmH0xgA",
        "outputId": "6a793110-884d-4f59-89ec-9c5eced9b98a"
      },
      "source": [
        "#@title Install dependencies (restart runtime after installing)\n",
        "from IPython.display import Javascript\n",
        "display(Javascript('''google.colab.output.setIframeHeight(0, true, {maxHeight: 200})'''))\n",
        "!pip install ninja gradio fbpca boto3 requests==2.23.0 urllib3==1.25.11"
      ],
      "execution_count": 1,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "application/javascript": [
              "google.colab.output.setIframeHeight(0, true, {maxHeight: 200})"
            ],
            "text/plain": [
              "<IPython.core.display.Javascript object>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Collecting ninja\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/1d/de/393468f2a37fc2c1dc3a06afc37775e27fde2d16845424141d4da62c686d/ninja-1.10.0.post2-py3-none-manylinux1_x86_64.whl (107kB)\n",
            "\r\u001b[K     |███                             | 10kB 19.1MB/s eta 0:00:01\r\u001b[K     |██████                          | 20kB 17.8MB/s eta 0:00:01\r\u001b[K     |█████████▏                      | 30kB 10.3MB/s eta 0:00:01\r\u001b[K     |████████████▏                   | 40kB 8.4MB/s eta 0:00:01\r\u001b[K     |███████████████▎                | 51kB 5.3MB/s eta 0:00:01\r\u001b[K     |██████████████████▎             | 61kB 5.4MB/s eta 0:00:01\r\u001b[K     |█████████████████████▍          | 71kB 6.0MB/s eta 0:00:01\r\u001b[K     |████████████████████████▍       | 81kB 6.4MB/s eta 0:00:01\r\u001b[K     |███████████████████████████▍    | 92kB 6.5MB/s eta 0:00:01\r\u001b[K     |██████████████████████████████▌ | 102kB 6.8MB/s eta 0:00:01\r\u001b[K     |████████████████████████████████| 112kB 6.8MB/s \n",
            "\u001b[?25hCollecting gradio\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/59/97/b7210489b201409175e63afa3307f8e067fe1289cc19a68003dfeef03f06/gradio-2.1.0-py3-none-any.whl (2.5MB)\n",
            "\u001b[K     |████████████████████████████████| 2.5MB 8.5MB/s \n",
            "\u001b[?25hCollecting fbpca\n",
            "  Downloading https://files.pythonhosted.org/packages/a7/a5/2085d0645a4bb4f0b606251b0b7466c61326e4a471d445c1c3761a2d07bc/fbpca-1.0.tar.gz\n",
            "Collecting boto3\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/2c/e1/2c6c374f043c3f22829563b7fb2bf28fe3dca7ce5994bc5ceeff0959d6c9/boto3-1.17.105-py2.py3-none-any.whl (131kB)\n",
            "\u001b[K     |████████████████████████████████| 133kB 26.6MB/s \n",
            "\u001b[?25hRequirement already satisfied: requests==2.23.0 in /usr/local/lib/python3.7/dist-packages (2.23.0)\n",
            "Collecting urllib3==1.25.11\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/56/aa/4ef5aa67a9a62505db124a5cb5262332d1d4153462eb8fd89c9fa41e5d92/urllib3-1.25.11-py2.py3-none-any.whl (127kB)\n",
            "\u001b[K     |████████████████████████████████| 133kB 22.3MB/s \n",
            "\u001b[?25hRequirement already satisfied: pillow in /usr/local/lib/python3.7/dist-packages (from gradio) (7.1.2)\n",
            "Collecting ffmpy\n",
            "  Downloading https://files.pythonhosted.org/packages/bf/e2/947df4b3d666bfdd2b0c6355d215c45d2d40f929451cb29a8a2995b29788/ffmpy-0.3.0.tar.gz\n",
            "Requirement already satisfied: Flask>=1.1.1 in /usr/local/lib/python3.7/dist-packages (from gradio) (1.1.4)\n",
            "Collecting flask-cachebuster\n",
            "  Downloading https://files.pythonhosted.org/packages/74/47/f3e1fedfaad965c81c2f17234636d72f71450f1b4522ca26d2b7eb4a0a74/Flask-CacheBuster-1.0.0.tar.gz\n",
            "Collecting pycryptodome\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/ad/16/9627ab0493894a11c68e46000dbcc82f578c8ff06bc2980dcd016aea9bd3/pycryptodome-3.10.1-cp35-abi3-manylinux2010_x86_64.whl (1.9MB)\n",
            "\u001b[K     |████████████████████████████████| 1.9MB 26.5MB/s \n",
            "\u001b[?25hRequirement already satisfied: pandas in /usr/local/lib/python3.7/dist-packages (from gradio) (1.1.5)\n",
            "Collecting Flask-Cors>=3.0.8\n",
            "  Downloading https://files.pythonhosted.org/packages/db/84/901e700de86604b1c4ef4b57110d4e947c218b9997adf5d38fa7da493bce/Flask_Cors-3.0.10-py2.py3-none-any.whl\n",
            "Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (from gradio) (1.4.1)\n",
            "Collecting paramiko\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/95/19/124e9287b43e6ff3ebb9cdea3e5e8e88475a873c05ccdf8b7e20d2c4201e/paramiko-2.7.2-py2.py3-none-any.whl (206kB)\n",
            "\u001b[K     |████████████████████████████████| 215kB 49.0MB/s \n",
            "\u001b[?25hCollecting analytics-python\n",
            "  Downloading https://files.pythonhosted.org/packages/30/81/2f447982f8d5dec5b56c10ca9ac53e5de2b2e9e2bdf7e091a05731f21379/analytics_python-1.3.1-py2.py3-none-any.whl\n",
            "Collecting markdown2\n",
            "  Downloading https://files.pythonhosted.org/packages/5d/be/3924cc1c0e12030b5225de2b4521f1dc729730773861475de26be64a0d2b/markdown2-2.4.0-py2.py3-none-any.whl\n",
            "Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from gradio) (1.19.5)\n",
            "Requirement already satisfied: matplotlib in /usr/local/lib/python3.7/dist-packages (from gradio) (3.2.2)\n",
            "Collecting Flask-Login\n",
            "  Downloading https://files.pythonhosted.org/packages/2b/83/ac5bf3279f969704fc1e63f050c50e10985e50fd340e6069ec7e09df5442/Flask_Login-0.5.0-py2.py3-none-any.whl\n",
            "Collecting jmespath<1.0.0,>=0.7.1\n",
            "  Downloading https://files.pythonhosted.org/packages/07/cb/5f001272b6faeb23c1c9e0acc04d48eaaf5c862c17709d20e3469c6e0139/jmespath-0.10.0-py2.py3-none-any.whl\n",
            "Collecting s3transfer<0.5.0,>=0.4.0\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/63/d0/693477c688348654ddc21dcdce0817653a294aa43f41771084c25e7ff9c7/s3transfer-0.4.2-py2.py3-none-any.whl (79kB)\n",
            "\u001b[K     |████████████████████████████████| 81kB 12.5MB/s \n",
            "\u001b[?25hCollecting botocore<1.21.0,>=1.20.105\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/95/da/3417300f85ba5173e8dba9248b9ae8bcb74a8aac1c92fa3d257f99073b9e/botocore-1.20.105-py2.py3-none-any.whl (7.7MB)\n",
            "\u001b[K     |████████████████████████████████| 7.7MB 45.1MB/s \n",
            "\u001b[?25hRequirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests==2.23.0) (2021.5.30)\n",
            "Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests==2.23.0) (3.0.4)\n",
            "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests==2.23.0) (2.10)\n",
            "Requirement already satisfied: click<8.0,>=5.1 in /usr/local/lib/python3.7/dist-packages (from Flask>=1.1.1->gradio) (7.1.2)\n",
            "Requirement already satisfied: Jinja2<3.0,>=2.10.1 in /usr/local/lib/python3.7/dist-packages (from Flask>=1.1.1->gradio) (2.11.3)\n",
            "Requirement already satisfied: Werkzeug<2.0,>=0.15 in /usr/local/lib/python3.7/dist-packages (from Flask>=1.1.1->gradio) (1.0.1)\n",
            "Requirement already satisfied: itsdangerous<2.0,>=0.24 in /usr/local/lib/python3.7/dist-packages (from Flask>=1.1.1->gradio) (1.1.0)\n",
            "Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from pandas->gradio) (2.8.1)\n",
            "Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.7/dist-packages (from pandas->gradio) (2018.9)\n",
            "Requirement already satisfied: Six in /usr/local/lib/python3.7/dist-packages (from Flask-Cors>=3.0.8->gradio) (1.15.0)\n",
            "Collecting pynacl>=1.0.1\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/9d/57/2f5e6226a674b2bcb6db531e8b383079b678df5b10cdaa610d6cf20d77ba/PyNaCl-1.4.0-cp35-abi3-manylinux1_x86_64.whl (961kB)\n",
            "\u001b[K     |████████████████████████████████| 962kB 53.6MB/s \n",
            "\u001b[?25hCollecting cryptography>=2.5\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/b2/26/7af637e6a7e87258b963f1731c5982fb31cd507f0d90d91836e446955d02/cryptography-3.4.7-cp36-abi3-manylinux2014_x86_64.whl (3.2MB)\n",
            "\u001b[K     |████████████████████████████████| 3.2MB 49.0MB/s \n",
            "\u001b[?25hCollecting bcrypt>=3.1.3\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/26/70/6d218afbe4c73538053c1016dd631e8f25fffc10cd01f5c272d7acf3c03d/bcrypt-3.2.0-cp36-abi3-manylinux2010_x86_64.whl (63kB)\n",
            "\u001b[K     |████████████████████████████████| 71kB 11.2MB/s \n",
            "\u001b[?25hCollecting backoff==1.10.0\n",
            "  Downloading https://files.pythonhosted.org/packages/f0/32/c5dd4f4b0746e9ec05ace2a5045c1fc375ae67ee94355344ad6c7005fd87/backoff-1.10.0-py2.py3-none-any.whl\n",
            "Collecting monotonic>=1.5\n",
            "  Downloading https://files.pythonhosted.org/packages/9a/67/7e8406a29b6c45be7af7740456f7f37025f0506ae2e05fb9009a53946860/monotonic-1.6-py2.py3-none-any.whl\n",
            "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages (from matplotlib->gradio) (0.10.0)\n",
            "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->gradio) (1.3.1)\n",
            "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->gradio) (2.4.7)\n",
            "Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.7/dist-packages (from Jinja2<3.0,>=2.10.1->Flask>=1.1.1->gradio) (2.0.1)\n",
            "Requirement already satisfied: cffi>=1.4.1 in /usr/local/lib/python3.7/dist-packages (from pynacl>=1.0.1->paramiko->gradio) (1.14.5)\n",
            "Requirement already satisfied: pycparser in /usr/local/lib/python3.7/dist-packages (from cffi>=1.4.1->pynacl>=1.0.1->paramiko->gradio) (2.20)\n",
            "Building wheels for collected packages: fbpca, ffmpy, flask-cachebuster\n",
            "  Building wheel for fbpca (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for fbpca: filename=fbpca-1.0-cp37-none-any.whl size=11376 sha256=4b14cfd952b104d56a985021caf774f906fed7ca5fae1d1f41c570c6c0ea121c\n",
            "  Stored in directory: /root/.cache/pip/wheels/53/a2/dd/9b66cf53dbc58cec1e613d216689e5fa946d3e7805c30f60dc\n",
            "  Building wheel for ffmpy (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for ffmpy: filename=ffmpy-0.3.0-cp37-none-any.whl size=4710 sha256=571d113a8f5d748045ade970eca5e1a4bab4ed32cfb262851649d238839f682d\n",
            "  Stored in directory: /root/.cache/pip/wheels/cc/ac/c4/bef572cb7e52bfca170046f567e64858632daf77e0f34e5a74\n",
            "  Building wheel for flask-cachebuster (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for flask-cachebuster: filename=Flask_CacheBuster-1.0.0-cp37-none-any.whl size=3372 sha256=37a3576c476072ff54679fb45e5e3c1150e6a1790d23da3873cc2394f3be7741\n",
            "  Stored in directory: /root/.cache/pip/wheels/9f/fc/a7/ab5712c3ace9a8f97276465cc2937316ab8063c1fea488ea77\n",
            "Successfully built fbpca ffmpy flask-cachebuster\n",
            "\u001b[31mERROR: datascience 0.10.6 has requirement folium==0.2.1, but you'll have folium 0.8.3 which is incompatible.\u001b[0m\n",
            "Installing collected packages: ninja, ffmpy, flask-cachebuster, pycryptodome, Flask-Cors, pynacl, cryptography, bcrypt, paramiko, backoff, monotonic, analytics-python, markdown2, Flask-Login, gradio, fbpca, jmespath, urllib3, botocore, s3transfer, boto3\n",
            "  Found existing installation: urllib3 1.24.3\n",
            "    Uninstalling urllib3-1.24.3:\n",
            "      Successfully uninstalled urllib3-1.24.3\n",
            "Successfully installed Flask-Cors-3.0.10 Flask-Login-0.5.0 analytics-python-1.3.1 backoff-1.10.0 bcrypt-3.2.0 boto3-1.17.105 botocore-1.20.105 cryptography-3.4.7 fbpca-1.0 ffmpy-0.3.0 flask-cachebuster-1.0.0 gradio-2.1.0 jmespath-0.10.0 markdown2-2.4.0 monotonic-1.6 ninja-1.10.0.post2 paramiko-2.7.2 pycryptodome-3.10.1 pynacl-1.4.0 s3transfer-0.4.2 urllib3-1.25.11\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "qwf-gggHtA_t",
        "outputId": "68f7afee-6889-4f9c-97d0-de9ba931c206"
      },
      "source": [
        "!git clone https://github.com/mfrashad/ClothingGAN.git\n",
        "%cd ClothingGAN/"
      ],
      "execution_count": 1,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Cloning into 'ClothingGAN'...\n",
            "remote: Enumerating objects: 333, done.\u001b[K\n",
            "remote: Counting objects: 100% (60/60), done.\u001b[K\n",
            "remote: Compressing objects: 100% (37/37), done.\u001b[K\n",
            "remote: Total 333 (delta 38), reused 22 (delta 22), pack-reused 273\u001b[K\n",
            "Receiving objects: 100% (333/333), 47.08 MiB | 51.89 MiB/s, done.\n",
            "Resolving deltas: 100% (108/108), done.\n",
            "/content/ClothingGAN\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 153
        },
        "cellView": "form",
        "id": "2BYsIETVtGnF",
        "outputId": "e3b5c2ac-9c18-4917-de0f-1f2c126aa696"
      },
      "source": [
        "#@title Install other dependencies\n",
        "from IPython.display import Javascript\n",
        "display(Javascript('''google.colab.output.setIframeHeight(0, true, {maxHeight: 200})'''))\n",
        "!git submodule update --init --recursive\n",
        "!python -c \"import nltk; nltk.download('wordnet')\""
      ],
      "execution_count": 2,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "application/javascript": [
              "google.colab.output.setIframeHeight(0, true, {maxHeight: 200})"
            ],
            "text/plain": [
              "<IPython.core.display.Javascript object>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Submodule 'stylegan/stylegan_tf' (https://github.com/NVlabs/stylegan.git) registered for path 'models/stylegan/stylegan_tf'\n",
            "Submodule 'stylegan2/stylegan2-pytorch' (https://github.com/harskish/stylegan2-pytorch.git) registered for path 'models/stylegan2/stylegan2-pytorch'\n",
            "Cloning into '/content/ClothingGAN/models/stylegan/stylegan_tf'...\n",
            "Cloning into '/content/ClothingGAN/models/stylegan2/stylegan2-pytorch'...\n",
            "Submodule path 'models/stylegan/stylegan_tf': checked out '66813a32aac5045fcde72751522a0c0ba963f6f2'\n",
            "Submodule path 'models/stylegan2/stylegan2-pytorch': checked out '91ea2a7a4320701535466cce942c9e099d65670e'\n",
            "[nltk_data] Downloading package wordnet to /root/nltk_data...\n",
            "[nltk_data]   Unzipping corpora/wordnet.zip.\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "cellView": "form",
        "id": "dJg91yvSwKi3",
        "outputId": "15c2285c-e8da-45b9-bdc2-9bab3709b270"
      },
      "source": [
        "#@title Load Model\n",
        "selected_model = 'lookbook'\n",
        "\n",
        "# Load model\n",
        "from IPython.utils import io\n",
        "import torch\n",
        "import PIL\n",
        "import numpy as np\n",
        "import ipywidgets as widgets\n",
        "from PIL import Image\n",
        "import imageio\n",
        "from models import get_instrumented_model\n",
        "from decomposition import get_or_compute\n",
        "from config import Config\n",
        "from skimage import img_as_ubyte\n",
        "\n",
        "# Speed up computation\n",
        "torch.autograd.set_grad_enabled(False)\n",
        "torch.backends.cudnn.benchmark = True\n",
        "\n",
        "# Specify model to use\n",
        "config = Config(\n",
        "  model='StyleGAN2',\n",
        "  layer='style',\n",
        "  output_class=selected_model,\n",
        "  components=80,\n",
        "  use_w=True,\n",
        "  batch_size=5_000, # style layer quite small\n",
        ")\n",
        "\n",
        "inst = get_instrumented_model(config.model, config.output_class,\n",
        "                              config.layer, torch.device('cuda'), use_w=config.use_w)\n",
        "\n",
        "path_to_components = get_or_compute(config, inst)\n",
        "\n",
        "model = inst.model\n",
        "\n",
        "comps = np.load(path_to_components)\n",
        "lst = comps.files\n",
        "latent_dirs = []\n",
        "latent_stdevs = []\n",
        "\n",
        "load_activations = False\n",
        "\n",
        "for item in lst:\n",
        "    if load_activations:\n",
        "      if item == 'act_comp':\n",
        "        for i in range(comps[item].shape[0]):\n",
        "          latent_dirs.append(comps[item][i])\n",
        "      if item == 'act_stdev':\n",
        "        for i in range(comps[item].shape[0]):\n",
        "          latent_stdevs.append(comps[item][i])\n",
        "    else:\n",
        "      if item == 'lat_comp':\n",
        "        for i in range(comps[item].shape[0]):\n",
        "          latent_dirs.append(comps[item][i])\n",
        "      if item == 'lat_stdev':\n",
        "        for i in range(comps[item].shape[0]):\n",
        "          latent_stdevs.append(comps[item][i])"
      ],
      "execution_count": 3,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "StyleGAN2: Optimized CUDA op FusedLeakyReLU not available, using native PyTorch fallback.\n",
            "StyleGAN2: Optimized CUDA op UpFirDn2d not available, using native PyTorch fallback.\n",
            "Downloading https://drive.google.com/uc?export=download&id=1-F-RMkbHUv_S_k-_olh43mu5rDUMGYKe\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "cellView": "form",
        "id": "uCR_3Ghos2kK"
      },
      "source": [
        "#@title Define functions\n",
        "from ipywidgets import fixed\n",
        "\n",
        "# Taken from https://github.com/alexanderkuk/log-progress\n",
        "def log_progress(sequence, every=1, size=None, name='Items'):\n",
        "    from ipywidgets import IntProgress, HTML, VBox\n",
        "    from IPython.display import display\n",
        "\n",
        "    is_iterator = False\n",
        "    if size is None:\n",
        "        try:\n",
        "            size = len(sequence)\n",
        "        except TypeError:\n",
        "            is_iterator = True\n",
        "    if size is not None:\n",
        "        if every is None:\n",
        "            if size <= 200:\n",
        "                every = 1\n",
        "            else:\n",
        "                every = int(size / 200)     # every 0.5%\n",
        "    else:\n",
        "        assert every is not None, 'sequence is iterator, set every'\n",
        "\n",
        "    if is_iterator:\n",
        "        progress = IntProgress(min=0, max=1, value=1)\n",
        "        progress.bar_style = 'info'\n",
        "    else:\n",
        "        progress = IntProgress(min=0, max=size, value=0)\n",
        "    label = HTML()\n",
        "    box = VBox(children=[label, progress])\n",
        "    display(box)\n",
        "\n",
        "    index = 0\n",
        "    try:\n",
        "        for index, record in enumerate(sequence, 1):\n",
        "            if index == 1 or index % every == 0:\n",
        "                if is_iterator:\n",
        "                    label.value = '{name}: {index} / ?'.format(\n",
        "                        name=name,\n",
        "                        index=index\n",
        "                    )\n",
        "                else:\n",
        "                    progress.value = index\n",
        "                    label.value = u'{name}: {index} / {size}'.format(\n",
        "                        name=name,\n",
        "                        index=index,\n",
        "                        size=size\n",
        "                    )\n",
        "            yield record\n",
        "    except:\n",
        "        progress.bar_style = 'danger'\n",
        "        raise\n",
        "    else:\n",
        "        progress.bar_style = 'success'\n",
        "        progress.value = index\n",
        "        label.value = \"{name}: {index}\".format(\n",
        "            name=name,\n",
        "            index=str(index or '?')\n",
        "        )\n",
        "\n",
        "def name_direction(sender):\n",
        "  if not text.value:\n",
        "    print('Please name the direction before saving')\n",
        "    return\n",
        "    \n",
        "  if num in named_directions.values():\n",
        "    target_key = list(named_directions.keys())[list(named_directions.values()).index(num)]\n",
        "    print(f'Direction already named: {target_key}')\n",
        "    print(f'Overwriting... ')\n",
        "    del(named_directions[target_key])\n",
        "  named_directions[text.value] = [num, start_layer.value, end_layer.value]\n",
        "  save_direction(random_dir, text.value)\n",
        "  for item in named_directions:\n",
        "    print(item, named_directions[item])\n",
        "\n",
        "def save_direction(direction, filename):\n",
        "  filename += \".npy\"\n",
        "  np.save(filename, direction, allow_pickle=True, fix_imports=True)\n",
        "  print(f'Latent direction saved as {filename}')\n",
        "\n",
        "def mix_w(w1, w2, content, style):\n",
        "    for i in range(0,5):\n",
        "        w2[i] = w1[i] * (1 - content) + w2[i] * content\n",
        "\n",
        "    for i in range(5, 16):\n",
        "        w2[i] = w1[i] * (1 - style) + w2[i] * style\n",
        "    \n",
        "    return w2\n",
        "\n",
        "def display_sample_pytorch(seed, truncation, directions, distances, scale, start, end, w=None, disp=True, save=None, noise_spec=None):\n",
        "    # blockPrint()\n",
        "    model.truncation = truncation\n",
        "    if w is None:\n",
        "        w = model.sample_latent(1, seed=seed).detach().cpu().numpy()\n",
        "        w = [w]*model.get_max_latents() # one per layer\n",
        "    else:\n",
        "        w = [np.expand_dims(x, 0) for x in w]\n",
        "    \n",
        "    for l in range(start, end):\n",
        "      for i in range(len(directions)):\n",
        "        w[l] = w[l] + directions[i] * distances[i] * scale\n",
        "    \n",
        "    torch.cuda.empty_cache()\n",
        "    #save image and display\n",
        "    out = model.sample_np(w)\n",
        "    final_im = Image.fromarray((out * 255).astype(np.uint8)).resize((500,500),Image.LANCZOS)\n",
        "    \n",
        "    \n",
        "    if save is not None:\n",
        "      if disp == False:\n",
        "        print(save)\n",
        "      final_im.save(f'out/{seed}_{save:05}.png')\n",
        "    if disp:\n",
        "      display(final_im)\n",
        "    \n",
        "    return final_im\n",
        "\n",
        "def generate_mov(seed, truncation, direction_vec, scale, layers, n_frames, out_name = 'out', noise_spec = None, loop=True):\n",
        "  \"\"\"Generates a mov moving back and forth along the chosen direction vector\"\"\"\n",
        "  # Example of reading a generated set of images, and storing as MP4.\n",
        "  %mkdir out\n",
        "  movieName = f'out/{out_name}.mp4'\n",
        "  offset = -10\n",
        "  step = 20 / n_frames\n",
        "  imgs = []\n",
        "  for i in log_progress(range(n_frames), name = \"Generating frames\"):\n",
        "    print(f'\\r{i} / {n_frames}', end='')\n",
        "    w = model.sample_latent(1, seed=seed).cpu().numpy()\n",
        "\n",
        "    model.truncation = truncation\n",
        "    w = [w]*model.get_max_latents() # one per layer\n",
        "    for l in layers:\n",
        "      if l <= model.get_max_latents():\n",
        "          w[l] = w[l] + direction_vec * offset * scale\n",
        "\n",
        "    #save image and display\n",
        "    out = model.sample_np(w)\n",
        "    final_im = Image.fromarray((out * 255).astype(np.uint8))\n",
        "    imgs.append(out)\n",
        "    #increase offset\n",
        "    offset += step\n",
        "  if loop:\n",
        "    imgs += imgs[::-1]\n",
        "  with imageio.get_writer(movieName, mode='I') as writer:\n",
        "    for image in log_progress(list(imgs), name = \"Creating animation\"):\n",
        "        writer.append_data(img_as_ubyte(image))"
      ],
      "execution_count": 4,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 640
        },
        "cellView": "form",
        "id": "jneXxZnNwHo5",
        "outputId": "c8e2b76e-3a00-47f5-ba2d-51606f09ee93"
      },
      "source": [
        "#@title Demo UI\n",
        "import gradio as gr\n",
        "import numpy as np\n",
        "\n",
        "def generate_image(seed1, seed2, content, style, truncation, c0, c1, c2, c3, c4, c5, c6, start_layer, end_layer):\n",
        "    seed1 = int(seed1)\n",
        "    seed2 = int(seed2)\n",
        "\n",
        "    scale = 1\n",
        "    params = {'c0': c0,\n",
        "          'c1': c1,\n",
        "          'c2': c2,\n",
        "          'c3': c3,\n",
        "          'c4': c4,\n",
        "          'c5': c5,\n",
        "          'c6': c6}\n",
        "\n",
        "    param_indexes = {'c0': 0,\n",
        "              'c1': 1,\n",
        "              'c2': 2,\n",
        "              'c3': 3,\n",
        "              'c4': 4,\n",
        "              'c5': 5,\n",
        "              'c6': 6}\n",
        "\n",
        "    directions = []\n",
        "    distances = []\n",
        "    for k, v in params.items():\n",
        "        directions.append(latent_dirs[param_indexes[k]])\n",
        "        distances.append(v)\n",
        "\n",
        "    w1 = model.sample_latent(1, seed=seed1).detach().cpu().numpy()\n",
        "    w1 = [w1]*model.get_max_latents() # one per layer\n",
        "    im1 = model.sample_np(w1)\n",
        "\n",
        "    w2 = model.sample_latent(1, seed=seed2).detach().cpu().numpy()\n",
        "    w2 = [w2]*model.get_max_latents() # one per layer\n",
        "    im2 = model.sample_np(w2)\n",
        "    combined_im = np.concatenate([im1, im2], axis=1)\n",
        "    input_im = Image.fromarray((combined_im * 255).astype(np.uint8))\n",
        "    \n",
        "\n",
        "    mixed_w = mix_w(w1, w2, content, style)\n",
        "    return input_im, display_sample_pytorch(seed1, truncation, directions, distances, scale, int(start_layer), int(end_layer), w=mixed_w, disp=False)\n",
        "\n",
        "truncation = gr.inputs.Slider(minimum=0, maximum=1, default=0.5, label=\"Truncation\")\n",
        "start_layer = gr.inputs.Number(default=0, label=\"Start Layer\")\n",
        "end_layer = gr.inputs.Number(default=14, label=\"End Layer\")\n",
        "seed1 = gr.inputs.Number(default=0, label=\"Seed 1\")\n",
        "seed2 = gr.inputs.Number(default=0, label=\"Seed 2\")\n",
        "content = gr.inputs.Slider(label=\"Structure\", minimum=0, maximum=1, default=0.5)\n",
        "style = gr.inputs.Slider(label=\"Style\", minimum=0, maximum=1, default=0.5)\n",
        "\n",
        "slider_max_val = 20\n",
        "slider_min_val = -20\n",
        "slider_step = 1\n",
        "\n",
        "c0 = gr.inputs.Slider(label=\"Sleeve & Size\", minimum=slider_min_val, maximum=slider_max_val, default=0)\n",
        "c1 = gr.inputs.Slider(label=\"Dress - Jacket\", minimum=slider_min_val, maximum=slider_max_val, default=0)\n",
        "c2 = gr.inputs.Slider(label=\"Female Coat\", minimum=slider_min_val, maximum=slider_max_val, default=0)\n",
        "c3 = gr.inputs.Slider(label=\"Coat\", minimum=slider_min_val, maximum=slider_max_val, default=0)\n",
        "c4 = gr.inputs.Slider(label=\"Graphics\", minimum=slider_min_val, maximum=slider_max_val, default=0)\n",
        "c5 = gr.inputs.Slider(label=\"Dark\", minimum=slider_min_val, maximum=slider_max_val, default=0)\n",
        "c6 = gr.inputs.Slider(label=\"Less Cleavage\", minimum=slider_min_val, maximum=slider_max_val, default=0)\n",
        "\n",
        "\n",
        "scale = 1\n",
        "\n",
        "inputs = [seed1, seed2, content, style, truncation, c0, c1, c2, c3, c4, c5, c6, start_layer, end_layer]\n",
        "\n",
        "gr.Interface(generate_image, inputs, [\"image\", \"image\"], live=True, title=\"ClothingGAN\").launch()"
      ],
      "execution_count": 5,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Colab notebook detected. To show errors in colab notebook, set `debug=True` in `launch()`\n",
            "This share link will expire in 24 hours. If you need a permanent link, visit: https://gradio.app/introducing-hosted (NEW!)\n",
            "Running on External URL: https://10342.gradio.app\n",
            "Interface loading below...\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "text/html": [
              "\n",
              "        <iframe\n",
              "            width=\"900\"\n",
              "            height=\"500\"\n",
              "            src=\"https://10342.gradio.app\"\n",
              "            frameborder=\"0\"\n",
              "            allowfullscreen\n",
              "        ></iframe>\n",
              "        "
            ],
            "text/plain": [
              "<IPython.lib.display.IFrame at 0x7f3d693d3bd0>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "(<Flask 'gradio.networking'>,\n",
              " 'http://127.0.0.1:7860/',\n",
              " 'https://10342.gradio.app')"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 5
        }
      ]
    }
  ]
}