Spaces:
Running
on
A10G
Running
on
A10G
# pylint: disable=R0801 | |
""" | |
This module is responsible for handling the animation of faces using a combination of deep learning models and image processing techniques. | |
It provides a pipeline to generate realistic face animations by incorporating user-provided conditions such as facial expressions and environments. | |
The module utilizes various schedulers and utilities to optimize the animation process and ensure efficient performance. | |
Functions and Classes: | |
- StaticPipelineOutput: A class that represents the output of the animation pipeline, c | |
ontaining properties and methods related to the generated images. | |
- prepare_latents: A function that prepares the initial noise for the animation process, | |
scaling it according to the scheduler's requirements. | |
- prepare_condition: A function that processes the user-provided conditions | |
(e.g., facial expressions) and prepares them for use in the animation pipeline. | |
- decode_latents: A function that decodes the latent representations of the face animations into | |
their corresponding image formats. | |
- prepare_extra_step_kwargs: A function that prepares additional parameters for each step of | |
the animation process, such as the generator and eta values. | |
Dependencies: | |
- numpy: A library for numerical computing. | |
- torch: A machine learning library based on PyTorch. | |
- diffusers: A library for image-to-image diffusion models. | |
- transformers: A library for pre-trained transformer models. | |
Usage: | |
- To create an instance of the animation pipeline, provide the necessary components such as | |
the VAE, reference UNET, denoising UNET, face locator, and image processor. | |
- Use the pipeline's methods to prepare the latents, conditions, and extra step arguments as | |
required for the animation process. | |
- Generate the face animations by decoding the latents and processing the conditions. | |
Note: | |
- The module is designed to work with the diffusers library, which is based on | |
the paper "Diffusion Models for Image-to-Image Translation" (https://arxiv.org/abs/2102.02765). | |
- The face animations generated by this module should be used for entertainment purposes | |
only and should respect the rights and privacy of the individuals involved. | |
""" | |
import inspect | |
from dataclasses import dataclass | |
from typing import Callable, List, Optional, Union | |
import numpy as np | |
import torch | |
from diffusers import DiffusionPipeline | |
from diffusers.image_processor import VaeImageProcessor | |
from diffusers.schedulers import (DDIMScheduler, DPMSolverMultistepScheduler, | |
EulerAncestralDiscreteScheduler, | |
EulerDiscreteScheduler, LMSDiscreteScheduler, | |
PNDMScheduler) | |
from diffusers.utils import BaseOutput, is_accelerate_available | |
from diffusers.utils.torch_utils import randn_tensor | |
from einops import rearrange | |
from tqdm import tqdm | |
from transformers import CLIPImageProcessor | |
from hallo.models.mutual_self_attention import ReferenceAttentionControl | |
if is_accelerate_available(): | |
from accelerate import cpu_offload | |
else: | |
raise ImportError("Please install accelerate via `pip install accelerate`") | |
class StaticPipelineOutput(BaseOutput): | |
""" | |
StaticPipelineOutput is a class that represents the output of the static pipeline. | |
It contains the images generated by the pipeline as a union of torch.Tensor and np.ndarray. | |
Attributes: | |
images (Union[torch.Tensor, np.ndarray]): The generated images. | |
""" | |
images: Union[torch.Tensor, np.ndarray] | |
class StaticPipeline(DiffusionPipeline): | |
""" | |
StaticPipelineOutput is a class that represents the output of the static pipeline. | |
It contains the images generated by the pipeline as a union of torch.Tensor and np.ndarray. | |
Attributes: | |
images (Union[torch.Tensor, np.ndarray]): The generated images. | |
""" | |
_optional_components = [] | |
def __init__( | |
self, | |
vae, | |
reference_unet, | |
denoising_unet, | |
face_locator, | |
imageproj, | |
scheduler: Union[ | |
DDIMScheduler, | |
PNDMScheduler, | |
LMSDiscreteScheduler, | |
EulerDiscreteScheduler, | |
EulerAncestralDiscreteScheduler, | |
DPMSolverMultistepScheduler, | |
], | |
): | |
super().__init__() | |
self.register_modules( | |
vae=vae, | |
reference_unet=reference_unet, | |
denoising_unet=denoising_unet, | |
face_locator=face_locator, | |
scheduler=scheduler, | |
imageproj=imageproj, | |
) | |
self.vae_scale_factor = 2 ** ( | |
len(self.vae.config.block_out_channels) - 1) | |
self.clip_image_processor = CLIPImageProcessor() | |
self.ref_image_processor = VaeImageProcessor( | |
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True | |
) | |
self.cond_image_processor = VaeImageProcessor( | |
vae_scale_factor=self.vae_scale_factor, | |
do_convert_rgb=True, | |
do_normalize=False, | |
) | |
def enable_vae_slicing(self): | |
""" | |
Enable VAE slicing. | |
This method enables slicing for the VAE model, which can help improve the performance of decoding latents when working with large images. | |
""" | |
self.vae.enable_slicing() | |
def disable_vae_slicing(self): | |
""" | |
Disable vae slicing. | |
This function disables the vae slicing for the StaticPipeline object. | |
It calls the `disable_slicing()` method of the vae model. | |
This is useful when you want to use the entire vae model for decoding latents | |
instead of slicing it for better performance. | |
""" | |
self.vae.disable_slicing() | |
def enable_sequential_cpu_offload(self, gpu_id=0): | |
""" | |
Offloads selected models to the GPU for increased performance. | |
Args: | |
gpu_id (int, optional): The ID of the GPU to offload models to. Defaults to 0. | |
""" | |
device = torch.device(f"cuda:{gpu_id}") | |
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: | |
if cpu_offloaded_model is not None: | |
cpu_offload(cpu_offloaded_model, device) | |
def _execution_device(self): | |
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): | |
return self.device | |
for module in self.unet.modules(): | |
if ( | |
hasattr(module, "_hf_hook") | |
and hasattr(module._hf_hook, "execution_device") | |
and module._hf_hook.execution_device is not None | |
): | |
return torch.device(module._hf_hook.execution_device) | |
return self.device | |
def decode_latents(self, latents): | |
""" | |
Decode the given latents to video frames. | |
Parameters: | |
latents (torch.Tensor): The latents to be decoded. Shape: (batch_size, num_channels_latents, video_length, height, width). | |
Returns: | |
video (torch.Tensor): The decoded video frames. Shape: (batch_size, num_channels_latents, video_length, height, width). | |
""" | |
video_length = latents.shape[2] | |
latents = 1 / 0.18215 * latents | |
latents = rearrange(latents, "b c f h w -> (b f) c h w") | |
# video = self.vae.decode(latents).sample | |
video = [] | |
for frame_idx in tqdm(range(latents.shape[0])): | |
video.append(self.vae.decode( | |
latents[frame_idx: frame_idx + 1]).sample) | |
video = torch.cat(video) | |
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length) | |
video = (video / 2 + 0.5).clamp(0, 1) | |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 | |
video = video.cpu().float().numpy() | |
return video | |
def prepare_extra_step_kwargs(self, generator, eta): | |
""" | |
Prepare extra keyword arguments for the scheduler step. | |
Since not all schedulers have the same signature, this function helps to create a consistent interface for the scheduler. | |
Args: | |
generator (Optional[torch.Generator]): A random number generator for reproducibility. | |
eta (float): The eta parameter used with the DDIMScheduler. It should be between 0 and 1. | |
Returns: | |
dict: A dictionary containing the extra keyword arguments for the scheduler step. | |
""" | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set( | |
inspect.signature(self.scheduler.step).parameters.keys() | |
) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set( | |
inspect.signature(self.scheduler.step).parameters.keys() | |
) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def prepare_latents( | |
self, | |
batch_size, | |
num_channels_latents, | |
width, | |
height, | |
dtype, | |
device, | |
generator, | |
latents=None, | |
): | |
""" | |
Prepares the initial latents for the diffusion pipeline. | |
Args: | |
batch_size (int): The number of images to generate in one forward pass. | |
num_channels_latents (int): The number of channels in the latents tensor. | |
width (int): The width of the latents tensor. | |
height (int): The height of the latents tensor. | |
dtype (torch.dtype): The data type of the latents tensor. | |
device (torch.device): The device to place the latents tensor on. | |
generator (Optional[torch.Generator], optional): A random number generator | |
for reproducibility. Defaults to None. | |
latents (Optional[torch.Tensor], optional): Pre-computed latents to use as | |
initial conditions for the diffusion process. Defaults to None. | |
Returns: | |
torch.Tensor: The prepared latents tensor. | |
""" | |
shape = ( | |
batch_size, | |
num_channels_latents, | |
height // self.vae_scale_factor, | |
width // self.vae_scale_factor, | |
) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
latents = randn_tensor( | |
shape, generator=generator, device=device, dtype=dtype | |
) | |
else: | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents | |
def prepare_condition( | |
self, | |
cond_image, | |
width, | |
height, | |
device, | |
dtype, | |
do_classififer_free_guidance=False, | |
): | |
""" | |
Prepares the condition for the face animation pipeline. | |
Args: | |
cond_image (torch.Tensor): The conditional image tensor. | |
width (int): The width of the output image. | |
height (int): The height of the output image. | |
device (torch.device): The device to run the pipeline on. | |
dtype (torch.dtype): The data type of the tensor. | |
do_classififer_free_guidance (bool, optional): Whether to use classifier-free guidance or not. Defaults to False. | |
Returns: | |
Tuple[torch.Tensor, torch.Tensor]: A tuple of processed condition and mask tensors. | |
""" | |
image = self.cond_image_processor.preprocess( | |
cond_image, height=height, width=width | |
).to(dtype=torch.float32) | |
image = image.to(device=device, dtype=dtype) | |
if do_classififer_free_guidance: | |
image = torch.cat([image] * 2) | |
return image | |
def __call__( | |
self, | |
ref_image, | |
face_mask, | |
width, | |
height, | |
num_inference_steps, | |
guidance_scale, | |
face_embedding, | |
num_images_per_prompt=1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, | |
List[torch.Generator]]] = None, | |
output_type: Optional[str] = "tensor", | |
return_dict: bool = True, | |
callback: Optional[Callable[[ | |
int, int, torch.FloatTensor], None]] = None, | |
callback_steps: Optional[int] = 1, | |
**kwargs, | |
): | |
# Default height and width to unet | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
device = self._execution_device | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
batch_size = 1 | |
image_prompt_embeds = self.imageproj(face_embedding) | |
uncond_image_prompt_embeds = self.imageproj( | |
torch.zeros_like(face_embedding)) | |
if do_classifier_free_guidance: | |
image_prompt_embeds = torch.cat( | |
[uncond_image_prompt_embeds, image_prompt_embeds], dim=0 | |
) | |
reference_control_writer = ReferenceAttentionControl( | |
self.reference_unet, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
mode="write", | |
batch_size=batch_size, | |
fusion_blocks="full", | |
) | |
reference_control_reader = ReferenceAttentionControl( | |
self.denoising_unet, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
mode="read", | |
batch_size=batch_size, | |
fusion_blocks="full", | |
) | |
num_channels_latents = self.denoising_unet.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
width, | |
height, | |
face_embedding.dtype, | |
device, | |
generator, | |
) | |
latents = latents.unsqueeze(2) # (bs, c, 1, h', w') | |
# latents_dtype = latents.dtype | |
# Prepare extra step kwargs. | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# Prepare ref image latents | |
ref_image_tensor = self.ref_image_processor.preprocess( | |
ref_image, height=height, width=width | |
) # (bs, c, width, height) | |
ref_image_tensor = ref_image_tensor.to( | |
dtype=self.vae.dtype, device=self.vae.device | |
) | |
ref_image_latents = self.vae.encode(ref_image_tensor).latent_dist.mean | |
ref_image_latents = ref_image_latents * 0.18215 # (b, 4, h, w) | |
# Prepare face mask image | |
face_mask_tensor = self.cond_image_processor.preprocess( | |
face_mask, height=height, width=width | |
) | |
face_mask_tensor = face_mask_tensor.unsqueeze(2) # (bs, c, 1, h, w) | |
face_mask_tensor = face_mask_tensor.to( | |
device=device, dtype=self.face_locator.dtype | |
) | |
mask_fea = self.face_locator(face_mask_tensor) | |
mask_fea = ( | |
torch.cat( | |
[mask_fea] * 2) if do_classifier_free_guidance else mask_fea | |
) | |
# denoising loop | |
num_warmup_steps = len(timesteps) - \ | |
num_inference_steps * self.scheduler.order | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# 1. Forward reference image | |
if i == 0: | |
self.reference_unet( | |
ref_image_latents.repeat( | |
(2 if do_classifier_free_guidance else 1), 1, 1, 1 | |
), | |
torch.zeros_like(t), | |
encoder_hidden_states=image_prompt_embeds, | |
return_dict=False, | |
) | |
# 2. Update reference unet feature into denosing net | |
reference_control_reader.update(reference_control_writer) | |
# 3.1 expand the latents if we are doing classifier free guidance | |
latent_model_input = ( | |
torch.cat( | |
[latents] * 2) if do_classifier_free_guidance else latents | |
) | |
latent_model_input = self.scheduler.scale_model_input( | |
latent_model_input, t | |
) | |
noise_pred = self.denoising_unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=image_prompt_embeds, | |
mask_cond_fea=mask_fea, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * ( | |
noise_pred_text - noise_pred_uncond | |
) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step( | |
noise_pred, t, latents, **extra_step_kwargs, return_dict=False | |
)[0] | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ( | |
(i + 1) > num_warmup_steps and (i + | |
1) % self.scheduler.order == 0 | |
): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
reference_control_reader.clear() | |
reference_control_writer.clear() | |
# Post-processing | |
image = self.decode_latents(latents) # (b, c, 1, h, w) | |
# Convert to tensor | |
if output_type == "tensor": | |
image = torch.from_numpy(image) | |
if not return_dict: | |
return image | |
return StaticPipelineOutput(images=image) | |