Spaces:
Running
on
A10G
Running
on
A10G
Update app.py
Browse files
app.py
CHANGED
@@ -6,51 +6,8 @@ import os
|
|
6 |
|
7 |
from utils.gradio_helpers import parse_outputs, process_outputs
|
8 |
|
9 |
-
inputs = []
|
10 |
-
inputs.append(gr.Textbox(
|
11 |
-
label="Prompt", info='''Describe the subject. Include clothes and hairstyle for more consistency.'''
|
12 |
-
))
|
13 |
-
|
14 |
-
inputs.append(gr.Textbox(
|
15 |
-
label="Negative Prompt", info='''Things you do not want to see in your image'''
|
16 |
-
))
|
17 |
-
|
18 |
-
inputs.append(gr.Image(
|
19 |
-
label="Subject", type="filepath"
|
20 |
-
))
|
21 |
-
|
22 |
-
inputs.append(gr.Slider(
|
23 |
-
label="Number Of Outputs", info='''The number of images to generate.''', value=3,
|
24 |
-
minimum=1, maximum=20, step=1,
|
25 |
-
))
|
26 |
-
|
27 |
-
inputs.append(gr.Slider(
|
28 |
-
label="Number Of Images Per Pose", info='''The number of images to generate for each pose.''', value=1,
|
29 |
-
minimum=1, maximum=4, step=1,
|
30 |
-
))
|
31 |
-
|
32 |
-
inputs.append(gr.Checkbox(
|
33 |
-
label="Randomise Poses", info='''Randomise the poses used.''', value=True
|
34 |
-
))
|
35 |
-
|
36 |
-
inputs.append(gr.Dropdown(
|
37 |
-
choices=['webp', 'jpg', 'png'], label="output_format", info='''Format of the output images''', value="webp"
|
38 |
-
))
|
39 |
-
|
40 |
-
inputs.append(gr.Number(
|
41 |
-
label="Output Quality", info='''Quality of the output images, from 0 to 100. 100 is best quality, 0 is lowest quality.''', value=80
|
42 |
-
))
|
43 |
-
|
44 |
-
inputs.append(gr.Number(
|
45 |
-
label="Seed", info='''Set a seed for reproducibility. Random by default.''', value=None
|
46 |
-
))
|
47 |
-
|
48 |
names = ['prompt', 'negative_prompt', 'subject', 'number_of_outputs', 'number_of_images_per_pose', 'randomise_poses', 'output_format', 'output_quality', 'seed']
|
49 |
|
50 |
-
outputs = []
|
51 |
-
outputs.append(gr.Gallery())
|
52 |
-
|
53 |
-
expected_outputs = len(outputs)
|
54 |
def predict(request: gr.Request, *args, progress=gr.Progress(track_tqdm=True)):
|
55 |
headers = {'Content-Type': 'application/json'}
|
56 |
|
@@ -82,10 +39,7 @@ def predict(request: gr.Request, *args, progress=gr.Progress(track_tqdm=True)):
|
|
82 |
if(outputs[0].get_config()["name"] == "json"):
|
83 |
return json_response["output"]
|
84 |
predict_outputs = parse_outputs(json_response["output"])
|
85 |
-
processed_outputs = process_outputs(predict_outputs)
|
86 |
-
difference_outputs = expected_outputs - len(processed_outputs)
|
87 |
-
|
88 |
-
|
89 |
return tuple(processed_outputs) if len(processed_outputs) > 1 else processed_outputs[0]
|
90 |
else:
|
91 |
if(response.status_code == 409):
|
@@ -93,15 +47,63 @@ def predict(request: gr.Request, *args, progress=gr.Progress(track_tqdm=True)):
|
|
93 |
raise gr.Error(f"The submission failed! Error: {response.status_code}")
|
94 |
|
95 |
title = "Demo for consistent-character cog image by fofr"
|
96 |
-
model_description = "Create images of a given character in different poses"
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
)
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
|
|
6 |
|
7 |
from utils.gradio_helpers import parse_outputs, process_outputs
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
names = ['prompt', 'negative_prompt', 'subject', 'number_of_outputs', 'number_of_images_per_pose', 'randomise_poses', 'output_format', 'output_quality', 'seed']
|
10 |
|
|
|
|
|
|
|
|
|
11 |
def predict(request: gr.Request, *args, progress=gr.Progress(track_tqdm=True)):
|
12 |
headers = {'Content-Type': 'application/json'}
|
13 |
|
|
|
39 |
if(outputs[0].get_config()["name"] == "json"):
|
40 |
return json_response["output"]
|
41 |
predict_outputs = parse_outputs(json_response["output"])
|
42 |
+
processed_outputs = process_outputs(predict_outputs)
|
|
|
|
|
|
|
43 |
return tuple(processed_outputs) if len(processed_outputs) > 1 else processed_outputs[0]
|
44 |
else:
|
45 |
if(response.status_code == 409):
|
|
|
47 |
raise gr.Error(f"The submission failed! Error: {response.status_code}")
|
48 |
|
49 |
title = "Demo for consistent-character cog image by fofr"
|
50 |
+
model_description = "Create images of a given character in different poses • running cog image by fofr"
|
51 |
+
|
52 |
+
with gr.Blocks() as app:
|
53 |
+
with gr.Column(elem_id="col-container"):
|
54 |
+
gr.HTML(f"""
|
55 |
+
<h2 style="text-align: center;">Consistent Character Workflow</h2>
|
56 |
+
<p style="text-align: center;">{description}</p>
|
57 |
+
""")
|
58 |
+
|
59 |
+
with gr.Row():
|
60 |
+
with gr.Column():
|
61 |
+
prompt = gr.Textbox(
|
62 |
+
label="Prompt", info='''Describe the subject. Include clothes and hairstyle for more consistency.'''
|
63 |
+
)
|
64 |
+
|
65 |
+
subject = gr.Image(
|
66 |
+
label="Subject", type="filepath"
|
67 |
+
)
|
68 |
+
|
69 |
+
submit_btn = gr.Button("Submit")
|
70 |
+
|
71 |
+
with gr.Accordion(label="Advanced Settings", open=false):
|
72 |
+
negative_prompt = gr.Textbox(
|
73 |
+
label="Negative Prompt", info='''Things you do not want to see in your image'''
|
74 |
+
)
|
75 |
+
|
76 |
+
number_of_outputs = gr.Slider(
|
77 |
+
label="Number Of Outputs", info='''The number of images to generate.''', value=3,
|
78 |
+
minimum=1, maximum=20, step=1,
|
79 |
+
)
|
80 |
+
|
81 |
+
number_of_images_per_pose = gr.Slider(
|
82 |
+
label="Number Of Images Per Pose", info='''The number of images to generate for each pose.''', value=1,
|
83 |
+
minimum=1, maximum=4, step=1,
|
84 |
+
)
|
85 |
+
|
86 |
+
randomise_poses = gr.Checkbox(
|
87 |
+
label="Randomise Poses", info='''Randomise the poses used.''', value=True
|
88 |
+
)
|
89 |
+
|
90 |
+
output_format = gr.Dropdown(
|
91 |
+
choices=['webp', 'jpg', 'png'], label="output_format", info='''Format of the output images''', value="webp"
|
92 |
+
)
|
93 |
+
|
94 |
+
output_quality = gr.Number(
|
95 |
+
label="Output Quality", info='''Quality of the output images, from 0 to 100. 100 is best quality, 0 is lowest quality.''', value=80
|
96 |
+
)
|
97 |
+
|
98 |
+
seed = gr.Number(
|
99 |
+
label="Seed", info='''Set a seed for reproducibility. Random by default.''', value=None
|
100 |
+
)
|
101 |
+
|
102 |
+
with gr.Column():
|
103 |
+
consistent_results = gr.Gallery(label="Consistent Results")
|
104 |
+
|
105 |
+
inputs = [prompt, negative_prompt, subject, number_of_outputs, number_of_images_per_pose, randomise_poses, output_format, output_quality, seed]
|
106 |
+
outputs = [consistent_results]
|
107 |
+
|
108 |
+
app.queue().launch(share=False)
|
109 |
|