fffiloni's picture
Update wan/vace.py
46e54d8 verified
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import os
import sys
import gc
import math
import time
import random
import types
import logging
import traceback
from contextlib import contextmanager
from functools import partial
from PIL import Image
import torchvision.transforms.functional as TF
import torch
import torch.nn.functional as F
import torch.amp as amp
import torch.distributed as dist
import torch.multiprocessing as mp
from tqdm import tqdm
from .text2video import (WanT2V, T5EncoderModel, WanVAE, shard_model, FlowDPMSolverMultistepScheduler,
get_sampling_sigmas, retrieve_timesteps, FlowUniPCMultistepScheduler)
from .modules.vace_model import VaceWanModel
from .utils.vace_processor import VaceVideoProcessor
class WanVace(WanT2V):
def __init__(
self,
config,
checkpoint_dir,
device_id=0,
rank=0,
t5_fsdp=False,
dit_fsdp=False,
use_usp=False,
t5_cpu=False,
):
r"""
Initializes the Wan text-to-video generation model components.
Args:
config (EasyDict):
Object containing model parameters initialized from config.py
checkpoint_dir (`str`):
Path to directory containing model checkpoints
device_id (`int`, *optional*, defaults to 0):
Id of target GPU device
rank (`int`, *optional*, defaults to 0):
Process rank for distributed training
t5_fsdp (`bool`, *optional*, defaults to False):
Enable FSDP sharding for T5 model
dit_fsdp (`bool`, *optional*, defaults to False):
Enable FSDP sharding for DiT model
use_usp (`bool`, *optional*, defaults to False):
Enable distribution strategy of USP.
t5_cpu (`bool`, *optional*, defaults to False):
Whether to place T5 model on CPU. Only works without t5_fsdp.
"""
self.device = torch.device(f"cuda:{device_id}")
self.config = config
self.rank = rank
self.t5_cpu = t5_cpu
self.num_train_timesteps = config.num_train_timesteps
self.param_dtype = config.param_dtype
shard_fn = partial(shard_model, device_id=device_id)
self.text_encoder = T5EncoderModel(
text_len=config.text_len,
dtype=config.t5_dtype,
device=torch.device('cpu'),
checkpoint_path=os.path.join(checkpoint_dir, config.t5_checkpoint),
tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
shard_fn=shard_fn if t5_fsdp else None)
self.vae_stride = config.vae_stride
self.patch_size = config.patch_size
self.vae = WanVAE(
vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint),
device=self.device)
logging.info(f"Creating VaceWanModel from {checkpoint_dir}")
self.model = VaceWanModel.from_pretrained(checkpoint_dir)
self.model.eval().requires_grad_(False)
if use_usp:
from xfuser.core.distributed import \
get_sequence_parallel_world_size
from .distributed.xdit_context_parallel import (usp_attn_forward,
usp_dit_forward,
usp_dit_forward_vace)
for block in self.model.blocks:
block.self_attn.forward = types.MethodType(
usp_attn_forward, block.self_attn)
for block in self.model.vace_blocks:
block.self_attn.forward = types.MethodType(
usp_attn_forward, block.self_attn)
self.model.forward = types.MethodType(usp_dit_forward, self.model)
self.model.forward_vace = types.MethodType(usp_dit_forward_vace, self.model)
self.sp_size = get_sequence_parallel_world_size()
else:
self.sp_size = 1
if dist.is_initialized():
dist.barrier()
if dit_fsdp:
self.model = shard_fn(self.model)
else:
self.model.to(self.device)
self.sample_neg_prompt = config.sample_neg_prompt
self.vid_proc = VaceVideoProcessor(downsample=tuple([x * y for x, y in zip(config.vae_stride, self.patch_size)]),
min_area=720*1280,
max_area=720*1280,
min_fps=config.sample_fps,
max_fps=config.sample_fps,
zero_start=True,
seq_len=75600,
keep_last=True)
def vace_encode_frames(self, frames, ref_images, masks=None, vae=None):
vae = self.vae if vae is None else vae
if ref_images is None:
ref_images = [None] * len(frames)
else:
assert len(frames) == len(ref_images)
if masks is None:
latents = vae.encode(frames)
else:
masks = [torch.where(m > 0.5, 1.0, 0.0) for m in masks]
inactive = [i * (1 - m) + 0 * m for i, m in zip(frames, masks)]
reactive = [i * m + 0 * (1 - m) for i, m in zip(frames, masks)]
inactive = vae.encode(inactive)
reactive = vae.encode(reactive)
latents = [torch.cat((u, c), dim=0) for u, c in zip(inactive, reactive)]
cat_latents = []
for latent, refs in zip(latents, ref_images):
if refs is not None:
if masks is None:
ref_latent = vae.encode(refs)
else:
ref_latent = vae.encode(refs)
ref_latent = [torch.cat((u, torch.zeros_like(u)), dim=0) for u in ref_latent]
assert all([x.shape[1] == 1 for x in ref_latent])
latent = torch.cat([*ref_latent, latent], dim=1)
cat_latents.append(latent)
return cat_latents
def vace_encode_masks(self, masks, ref_images=None, vae_stride=None):
vae_stride = self.vae_stride if vae_stride is None else vae_stride
if ref_images is None:
ref_images = [None] * len(masks)
else:
assert len(masks) == len(ref_images)
result_masks = []
for mask, refs in zip(masks, ref_images):
c, depth, height, width = mask.shape
new_depth = int((depth + 3) // vae_stride[0])
height = 2 * (int(height) // (vae_stride[1] * 2))
width = 2 * (int(width) // (vae_stride[2] * 2))
# reshape
mask = mask[0, :, :, :]
mask = mask.view(
depth, height, vae_stride[1], width, vae_stride[1]
) # depth, height, 8, width, 8
mask = mask.permute(2, 4, 0, 1, 3) # 8, 8, depth, height, width
mask = mask.reshape(
vae_stride[1] * vae_stride[2], depth, height, width
) # 8*8, depth, height, width
# interpolation
mask = F.interpolate(mask.unsqueeze(0), size=(new_depth, height, width), mode='nearest-exact').squeeze(0)
if refs is not None:
length = len(refs)
mask_pad = torch.zeros_like(mask[:, :length, :, :])
mask = torch.cat((mask_pad, mask), dim=1)
result_masks.append(mask)
return result_masks
def vace_latent(self, z, m):
return [torch.cat([zz, mm], dim=0) for zz, mm in zip(z, m)]
def prepare_source(self, src_video, src_mask, src_ref_images, num_frames, image_size, device):
area = image_size[0] * image_size[1]
self.vid_proc.set_area(area)
if area == 720*1280:
self.vid_proc.set_seq_len(75600)
elif area == 480*832:
self.vid_proc.set_seq_len(32760)
else:
raise NotImplementedError(f'image_size {image_size} is not supported')
image_size = (image_size[1], image_size[0])
image_sizes = []
for i, (sub_src_video, sub_src_mask) in enumerate(zip(src_video, src_mask)):
if sub_src_mask is not None and sub_src_video is not None:
src_video[i], src_mask[i], _, _, _ = self.vid_proc.load_video_pair(sub_src_video, sub_src_mask)
src_video[i] = src_video[i].to(device)
src_mask[i] = src_mask[i].to(device)
src_mask[i] = torch.clamp((src_mask[i][:1, :, :, :] + 1) / 2, min=0, max=1)
image_sizes.append(src_video[i].shape[2:])
elif sub_src_video is None:
src_video[i] = torch.zeros((3, num_frames, image_size[0], image_size[1]), device=device)
src_mask[i] = torch.ones_like(src_video[i], device=device)
image_sizes.append(image_size)
else:
src_video[i], _, _, _ = self.vid_proc.load_video(sub_src_video)
src_video[i] = src_video[i].to(device)
src_mask[i] = torch.ones_like(src_video[i], device=device)
image_sizes.append(src_video[i].shape[2:])
for i, ref_images in enumerate(src_ref_images):
if ref_images is not None:
image_size = image_sizes[i]
for j, ref_img in enumerate(ref_images):
if ref_img is not None:
ref_img = Image.open(ref_img).convert("RGB")
ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(1)
if ref_img.shape[-2:] != image_size:
canvas_height, canvas_width = image_size
ref_height, ref_width = ref_img.shape[-2:]
white_canvas = torch.ones((3, 1, canvas_height, canvas_width), device=device) # [-1, 1]
scale = min(canvas_height / ref_height, canvas_width / ref_width)
new_height = int(ref_height * scale)
new_width = int(ref_width * scale)
resized_image = F.interpolate(ref_img.squeeze(1).unsqueeze(0), size=(new_height, new_width), mode='bilinear', align_corners=False).squeeze(0).unsqueeze(1)
top = (canvas_height - new_height) // 2
left = (canvas_width - new_width) // 2
white_canvas[:, :, top:top + new_height, left:left + new_width] = resized_image
ref_img = white_canvas
src_ref_images[i][j] = ref_img.to(device)
return src_video, src_mask, src_ref_images
def decode_latent(self, zs, ref_images=None, vae=None):
vae = self.vae if vae is None else vae
if ref_images is None:
ref_images = [None] * len(zs)
else:
assert len(zs) == len(ref_images)
trimed_zs = []
for z, refs in zip(zs, ref_images):
if refs is not None:
z = z[:, len(refs):, :, :]
trimed_zs.append(z)
return vae.decode(trimed_zs)
def generate(self,
input_prompt,
input_frames,
input_masks,
input_ref_images,
size=(1280, 720),
frame_num=81,
context_scale=1.0,
shift=5.0,
sample_solver='unipc',
sampling_steps=50,
guide_scale=5.0,
n_prompt="",
seed=-1,
offload_model=True):
r"""
Generates video frames from text prompt using diffusion process.
Args:
input_prompt (`str`):
Text prompt for content generation
size (tupele[`int`], *optional*, defaults to (1280,720)):
Controls video resolution, (width,height).
frame_num (`int`, *optional*, defaults to 81):
How many frames to sample from a video. The number should be 4n+1
shift (`float`, *optional*, defaults to 5.0):
Noise schedule shift parameter. Affects temporal dynamics
sample_solver (`str`, *optional*, defaults to 'unipc'):
Solver used to sample the video.
sampling_steps (`int`, *optional*, defaults to 40):
Number of diffusion sampling steps. Higher values improve quality but slow generation
guide_scale (`float`, *optional*, defaults 5.0):
Classifier-free guidance scale. Controls prompt adherence vs. creativity
n_prompt (`str`, *optional*, defaults to ""):
Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
seed (`int`, *optional*, defaults to -1):
Random seed for noise generation. If -1, use random seed.
offload_model (`bool`, *optional*, defaults to True):
If True, offloads models to CPU during generation to save VRAM
Returns:
torch.Tensor:
Generated video frames tensor. Dimensions: (C, N H, W) where:
- C: Color channels (3 for RGB)
- N: Number of frames (81)
- H: Frame height (from size)
- W: Frame width from size)
"""
# preprocess
# F = frame_num
# target_shape = (self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1,
# size[1] // self.vae_stride[1],
# size[0] // self.vae_stride[2])
#
# seq_len = math.ceil((target_shape[2] * target_shape[3]) /
# (self.patch_size[1] * self.patch_size[2]) *
# target_shape[1] / self.sp_size) * self.sp_size
if n_prompt == "":
n_prompt = self.sample_neg_prompt
seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
seed_g = torch.Generator(device=self.device)
seed_g.manual_seed(seed)
if not self.t5_cpu:
self.text_encoder.model.to(self.device)
context = self.text_encoder([input_prompt], self.device)
context_null = self.text_encoder([n_prompt], self.device)
if offload_model:
self.text_encoder.model.cpu()
else:
context = self.text_encoder([input_prompt], torch.device('cpu'))
context_null = self.text_encoder([n_prompt], torch.device('cpu'))
context = [t.to(self.device) for t in context]
context_null = [t.to(self.device) for t in context_null]
# vace context encode
z0 = self.vace_encode_frames(input_frames, input_ref_images, masks=input_masks)
m0 = self.vace_encode_masks(input_masks, input_ref_images)
z = self.vace_latent(z0, m0)
target_shape = list(z0[0].shape)
target_shape[0] = int(target_shape[0] / 2)
noise = [
torch.randn(
target_shape[0],
target_shape[1],
target_shape[2],
target_shape[3],
dtype=torch.float32,
device=self.device,
generator=seed_g)
]
seq_len = math.ceil((target_shape[2] * target_shape[3]) /
(self.patch_size[1] * self.patch_size[2]) *
target_shape[1] / self.sp_size) * self.sp_size
@contextmanager
def noop_no_sync():
yield
no_sync = getattr(self.model, 'no_sync', noop_no_sync)
# evaluation mode
with amp.autocast("cuda", dtype=self.param_dtype), torch.no_grad(), no_sync():
if sample_solver == 'unipc':
sample_scheduler = FlowUniPCMultistepScheduler(
num_train_timesteps=self.num_train_timesteps,
shift=1,
use_dynamic_shifting=False)
sample_scheduler.set_timesteps(
sampling_steps, device=self.device, shift=shift)
timesteps = sample_scheduler.timesteps
elif sample_solver == 'dpm++':
sample_scheduler = FlowDPMSolverMultistepScheduler(
num_train_timesteps=self.num_train_timesteps,
shift=1,
use_dynamic_shifting=False)
sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
timesteps, _ = retrieve_timesteps(
sample_scheduler,
device=self.device,
sigmas=sampling_sigmas)
else:
raise NotImplementedError("Unsupported solver.")
# sample videos
latents = noise
arg_c = {'context': context, 'seq_len': seq_len}
arg_null = {'context': context_null, 'seq_len': seq_len}
for _, t in enumerate(tqdm(timesteps)):
latent_model_input = latents
timestep = [t]
timestep = torch.stack(timestep)
self.model.to(self.device)
noise_pred_cond = self.model(
latent_model_input, t=timestep, vace_context=z, vace_context_scale=context_scale, **arg_c)[0]
noise_pred_uncond = self.model(
latent_model_input, t=timestep, vace_context=z, vace_context_scale=context_scale,**arg_null)[0]
noise_pred = noise_pred_uncond + guide_scale * (
noise_pred_cond - noise_pred_uncond)
temp_x0 = sample_scheduler.step(
noise_pred.unsqueeze(0),
t,
latents[0].unsqueeze(0),
return_dict=False,
generator=seed_g)[0]
latents = [temp_x0.squeeze(0)]
x0 = latents
if offload_model:
self.model.cpu()
torch.cuda.empty_cache()
if self.rank == 0:
videos = self.decode_latent(x0, input_ref_images)
del noise, latents
del sample_scheduler
if offload_model:
gc.collect()
torch.cuda.synchronize()
if dist.is_initialized():
dist.barrier()
return videos[0] if self.rank == 0 else None
class WanVaceMP(WanVace):
def __init__(
self,
config,
checkpoint_dir,
use_usp=False,
ulysses_size=None,
ring_size=None
):
self.config = config
self.checkpoint_dir = checkpoint_dir
self.use_usp = use_usp
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12345'
os.environ['RANK'] = '0'
os.environ['WORLD_SIZE'] = '1'
self.in_q_list = None
self.out_q = None
self.inference_pids = None
self.ulysses_size = ulysses_size
self.ring_size = ring_size
self.dynamic_load()
self.device = 'cpu' if torch.cuda.is_available() else 'cpu'
self.vid_proc = VaceVideoProcessor(
downsample=tuple([x * y for x, y in zip(config.vae_stride, config.patch_size)]),
min_area=480 * 832,
max_area=480 * 832,
min_fps=self.config.sample_fps,
max_fps=self.config.sample_fps,
zero_start=True,
seq_len=32760,
keep_last=True)
def dynamic_load(self):
if hasattr(self, 'inference_pids') and self.inference_pids is not None:
return
gpu_infer = os.environ.get('LOCAL_WORLD_SIZE') or torch.cuda.device_count()
pmi_rank = int(os.environ['RANK'])
pmi_world_size = int(os.environ['WORLD_SIZE'])
in_q_list = [torch.multiprocessing.Manager().Queue() for _ in range(gpu_infer)]
out_q = torch.multiprocessing.Manager().Queue()
initialized_events = [torch.multiprocessing.Manager().Event() for _ in range(gpu_infer)]
context = mp.spawn(self.mp_worker, nprocs=gpu_infer, args=(gpu_infer, pmi_rank, pmi_world_size, in_q_list, out_q, initialized_events, self), join=False)
all_initialized = False
while not all_initialized:
all_initialized = all(event.is_set() for event in initialized_events)
if not all_initialized:
time.sleep(0.1)
print('Inference model is initialized', flush=True)
self.in_q_list = in_q_list
self.out_q = out_q
self.inference_pids = context.pids()
self.initialized_events = initialized_events
def transfer_data_to_cuda(self, data, device):
if data is None:
return None
else:
if isinstance(data, torch.Tensor):
data = data.to(device)
elif isinstance(data, list):
data = [self.transfer_data_to_cuda(subdata, device) for subdata in data]
elif isinstance(data, dict):
data = {key: self.transfer_data_to_cuda(val, device) for key, val in data.items()}
return data
def mp_worker(self, gpu, gpu_infer, pmi_rank, pmi_world_size, in_q_list, out_q, initialized_events, work_env):
try:
world_size = pmi_world_size * gpu_infer
rank = pmi_rank * gpu_infer + gpu
print("world_size", world_size, "rank", rank, flush=True)
torch.cuda.set_device(gpu)
dist.init_process_group(
backend='nccl',
init_method='env://',
rank=rank,
world_size=world_size
)
from xfuser.core.distributed import (initialize_model_parallel,
init_distributed_environment)
init_distributed_environment(
rank=dist.get_rank(), world_size=dist.get_world_size())
initialize_model_parallel(
sequence_parallel_degree=dist.get_world_size(),
ring_degree=self.ring_size or 1,
ulysses_degree=self.ulysses_size or 1
)
num_train_timesteps = self.config.num_train_timesteps
param_dtype = self.config.param_dtype
shard_fn = partial(shard_model, device_id=gpu)
text_encoder = T5EncoderModel(
text_len=self.config.text_len,
dtype=self.config.t5_dtype,
device=torch.device('cpu'),
checkpoint_path=os.path.join(self.checkpoint_dir, self.config.t5_checkpoint),
tokenizer_path=os.path.join(self.checkpoint_dir, self.config.t5_tokenizer),
shard_fn=shard_fn if True else None)
text_encoder.model.to(gpu)
vae_stride = self.config.vae_stride
patch_size = self.config.patch_size
vae = WanVAE(
vae_pth=os.path.join(self.checkpoint_dir, self.config.vae_checkpoint),
device=gpu)
logging.info(f"Creating VaceWanModel from {self.checkpoint_dir}")
model = VaceWanModel.from_pretrained(self.checkpoint_dir)
model.eval().requires_grad_(False)
if self.use_usp:
from xfuser.core.distributed import get_sequence_parallel_world_size
from .distributed.xdit_context_parallel import (usp_attn_forward,
usp_dit_forward,
usp_dit_forward_vace)
for block in model.blocks:
block.self_attn.forward = types.MethodType(
usp_attn_forward, block.self_attn)
for block in model.vace_blocks:
block.self_attn.forward = types.MethodType(
usp_attn_forward, block.self_attn)
model.forward = types.MethodType(usp_dit_forward, model)
model.forward_vace = types.MethodType(usp_dit_forward_vace, model)
sp_size = get_sequence_parallel_world_size()
else:
sp_size = 1
dist.barrier()
model = shard_fn(model)
sample_neg_prompt = self.config.sample_neg_prompt
torch.cuda.empty_cache()
event = initialized_events[gpu]
in_q = in_q_list[gpu]
event.set()
while True:
item = in_q.get()
input_prompt, input_frames, input_masks, input_ref_images, size, frame_num, context_scale, \
shift, sample_solver, sampling_steps, guide_scale, n_prompt, seed, offload_model = item
input_frames = self.transfer_data_to_cuda(input_frames, gpu)
input_masks = self.transfer_data_to_cuda(input_masks, gpu)
input_ref_images = self.transfer_data_to_cuda(input_ref_images, gpu)
if n_prompt == "":
n_prompt = sample_neg_prompt
seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
seed_g = torch.Generator(device=gpu)
seed_g.manual_seed(seed)
context = text_encoder([input_prompt], gpu)
context_null = text_encoder([n_prompt], gpu)
# vace context encode
z0 = self.vace_encode_frames(input_frames, input_ref_images, masks=input_masks, vae=vae)
m0 = self.vace_encode_masks(input_masks, input_ref_images, vae_stride=vae_stride)
z = self.vace_latent(z0, m0)
target_shape = list(z0[0].shape)
target_shape[0] = int(target_shape[0] / 2)
noise = [
torch.randn(
target_shape[0],
target_shape[1],
target_shape[2],
target_shape[3],
dtype=torch.float32,
device=gpu,
generator=seed_g)
]
seq_len = math.ceil((target_shape[2] * target_shape[3]) /
(patch_size[1] * patch_size[2]) *
target_shape[1] / sp_size) * sp_size
@contextmanager
def noop_no_sync():
yield
no_sync = getattr(model, 'no_sync', noop_no_sync)
# evaluation mode
with amp.autocast("cuda", dtype=param_dtype), torch.no_grad(), no_sync():
if sample_solver == 'unipc':
sample_scheduler = FlowUniPCMultistepScheduler(
num_train_timesteps=num_train_timesteps,
shift=1,
use_dynamic_shifting=False)
sample_scheduler.set_timesteps(
sampling_steps, device=gpu, shift=shift)
timesteps = sample_scheduler.timesteps
elif sample_solver == 'dpm++':
sample_scheduler = FlowDPMSolverMultistepScheduler(
num_train_timesteps=num_train_timesteps,
shift=1,
use_dynamic_shifting=False)
sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
timesteps, _ = retrieve_timesteps(
sample_scheduler,
device=gpu,
sigmas=sampling_sigmas)
else:
raise NotImplementedError("Unsupported solver.")
# sample videos
latents = noise
arg_c = {'context': context, 'seq_len': seq_len}
arg_null = {'context': context_null, 'seq_len': seq_len}
for _, t in enumerate(tqdm(timesteps)):
latent_model_input = latents
timestep = [t]
timestep = torch.stack(timestep)
model.to(gpu)
noise_pred_cond = model(
latent_model_input, t=timestep, vace_context=z, vace_context_scale=context_scale, **arg_c)[
0]
noise_pred_uncond = model(
latent_model_input, t=timestep, vace_context=z, vace_context_scale=context_scale,
**arg_null)[0]
noise_pred = noise_pred_uncond + guide_scale * (
noise_pred_cond - noise_pred_uncond)
temp_x0 = sample_scheduler.step(
noise_pred.unsqueeze(0),
t,
latents[0].unsqueeze(0),
return_dict=False,
generator=seed_g)[0]
latents = [temp_x0.squeeze(0)]
torch.cuda.empty_cache()
x0 = latents
if rank == 0:
videos = self.decode_latent(x0, input_ref_images, vae=vae)
del noise, latents
del sample_scheduler
if offload_model:
gc.collect()
torch.cuda.synchronize()
if dist.is_initialized():
dist.barrier()
if rank == 0:
out_q.put(videos[0].cpu())
except Exception as e:
trace_info = traceback.format_exc()
print(trace_info, flush=True)
print(e, flush=True)
def generate(self,
input_prompt,
input_frames,
input_masks,
input_ref_images,
size=(1280, 720),
frame_num=81,
context_scale=1.0,
shift=5.0,
sample_solver='unipc',
sampling_steps=50,
guide_scale=5.0,
n_prompt="",
seed=-1,
offload_model=True):
input_data = (input_prompt, input_frames, input_masks, input_ref_images, size, frame_num, context_scale,
shift, sample_solver, sampling_steps, guide_scale, n_prompt, seed, offload_model)
for in_q in self.in_q_list:
in_q.put(input_data)
value_output = self.out_q.get()
return value_output