L4GM-demo / infer_4d.py
fffiloni's picture
Migrated from GitHub
2cdb96e verified
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import imageio.v3 as iio
import cv2
import numpy as np
import imageio
from copy import deepcopy
import os
import tyro
import glob
import imageio
import numpy as np
import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from safetensors.torch import load_file
import kiui
from kiui.cam import orbit_camera
from core.options import AllConfigs, Options
from core.models import LGM
import time
from core.utils import get_rays, grid_distortion, orbit_camera_jitter
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
USE_INTERPOLATION = True # set to false to disable interpolation
MAX_RUNS = 100
VIDEO_FPS = 30
opt = tyro.cli(AllConfigs)
# model
model = LGM(opt)
# resume pretrained checkpoint
if opt.resume is not None:
if opt.resume.endswith('safetensors'):
ckpt = load_file(opt.resume, device='cpu')
else:
ckpt = torch.load(opt.resume, map_location='cpu')
model.load_state_dict(ckpt, strict=False)
print(f'[INFO] Loaded checkpoint from {opt.resume}')
else:
print(f'[WARN] model randomly initialized, are you sure?')
# device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.half().to(device)
model.eval()
bg_color = torch.tensor([255, 255, 255], dtype=torch.float32, device="cuda") / 255.
rays_embeddings = model.prepare_default_rays(device)
rays_embeddings = torch.cat([rays_embeddings for _ in range(opt.num_frames)])
interp_opt = deepcopy(opt)
interp_opt.num_frames = 4
model_interp = LGM(interp_opt)
# resume pretrained checkpoint
if interp_opt.interpresume is not None:
if interp_opt.interpresume.endswith('safetensors'):
ckpt = load_file(interp_opt.interpresume, device='cpu')
else:
ckpt = torch.load(interp_opt.interpresume, map_location='cpu')
model_interp.load_state_dict(ckpt, strict=False)
print(f'[INFO] Loaded Interp checkpoint from {interp_opt.interpresume}')
else:
print(f'[WARN] model_interp randomly initialized, are you sure?')
# device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model_interp = model_interp.half().to(device)
model_interp.eval()
interp_rays_embeddings = model_interp.prepare_default_rays(device)
interp_rays_embeddings = torch.cat([interp_rays_embeddings for _ in range(interp_opt.num_frames)])
tan_half_fov = np.tan(0.5 * np.deg2rad(opt.fovy))
proj_matrix = torch.zeros(4, 4, dtype=torch.float32, device=device)
proj_matrix[0, 0] = 1 / tan_half_fov
proj_matrix[1, 1] = 1 / tan_half_fov
proj_matrix[2, 2] = (opt.zfar + opt.znear) / (opt.zfar - opt.znear)
proj_matrix[3, 2] = - (opt.zfar * opt.znear) / (opt.zfar - opt.znear)
proj_matrix[2, 3] = 1
def interpolate_tensors(tensor):
# Extract the first and last tensors along the first dimension (B)
start_tensor = tensor[0] # shape [4, 3, 256, 256]
end_tensor = tensor[-1] # shape [4, 3, 256, 256]
tensor_interp = deepcopy(tensor)
# Iterate over the range from 1 to second-last index
for i in range(1, tensor.shape[0] - 1):
# Calculate the weight for interpolation
weight = (i - 0) / (tensor.shape[0] - 1)
# Interpolate between start_tensor and end_tensor
tensor_interp[i] = torch.lerp(start_tensor, end_tensor, weight)
return tensor_interp
def process_eval_video(frames, video_path, T, start_t=0, downsample_rate=1):
L = frames.shape[0]
vid_name =video_path.split('/')[-1].split('.')[0]
total_frames = L//downsample_rate
print(f'{start_t} / {total_frames}')
frames = [frames[x] for x in range(frames.shape[0])]
V = opt.num_input_views
img_TV = []
for t in range(T):
t += start_t
t = min(t, L//downsample_rate-1)
t*=downsample_rate
img = frames[t]
img = cv2.resize(img, (256, 256), interpolation=cv2.INTER_AREA)
img = img.astype(np.float32) / 255.0
img_V = []
for v in range(V):
img_V.append(img)
img_TV.append(np.stack(img_V, axis=0))
return np.stack(img_TV, axis=0), L//downsample_rate- start_t
def load_mv_img(name, img_dir):
img_list = []
for v in range(4):
img = kiui.read_image(os.path.join(img_dir, name + f'_{v:03d}.png'), mode='uint8')
img = cv2.resize(img, (256, 256), interpolation=cv2.INTER_AREA)
img = img / 255.
img_list.append(img)
return np.stack(img_list, axis=0)
# process function
def process(opt: Options, path):
name = os.path.splitext(os.path.basename(path))[0]
print(f'[INFO] Processing {path} --> {name}')
os.makedirs(opt.workspace, exist_ok=True)
frames = iio.imread(path)
img_dir = opt.workspace
mv_image = load_mv_img(name, img_dir)
print(iio.immeta(path))
FPS = int(iio.immeta(path)['fps'])
downsample_rate = FPS // 15 if FPS > 15 else 1 # default reconstruction fps 15
with torch.inference_mode():
with torch.autocast(device_type='cuda', dtype=torch.float16):
start_t = 0
gaussians_all_frame_all_run = []
gaussians_all_frame_all_run_w_interp = []
for run_idx in range(MAX_RUNS):
ref_video, end_t = process_eval_video(frames, path, opt.num_frames, start_t, downsample_rate=downsample_rate)
ref_video[:, 1:] = mv_image[None, 1:] # repeat
input_image = torch.from_numpy(ref_video).reshape([-1, *ref_video.shape[2:]]).permute(0, 3, 1, 2).float().to(device) # [4, 3, 256, 256]
input_image = F.interpolate(input_image, size=(opt.input_size, opt.input_size), mode='bilinear', align_corners=False)
input_image = TF.normalize(input_image, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)
input_image = torch.cat([input_image, rays_embeddings], dim=1).unsqueeze(0) # [1, 4, 9, H, W]
end_time = time.time()
gaussians_all_frame = model.forward_gaussians(input_image)
print(f"Forward pass takes {time.time()-end_time} s")
B, T, V = 1, gaussians_all_frame.shape[0]//opt.batch_size, opt.num_views
gaussians_all_frame = gaussians_all_frame.reshape(B, T, *gaussians_all_frame.shape[1:])
if run_idx > 0:
gaussians_all_frame_wo_inter = gaussians_all_frame[:, 1:max(end_t, 1)]
else:
gaussians_all_frame_wo_inter = gaussians_all_frame
if gaussians_all_frame_wo_inter.shape[1] > 0 and USE_INTERPOLATION:
# render multiview video
render_img_TV = []
for t in range(gaussians_all_frame.shape[1]):
render_img_V = []
for v, azi in enumerate(np.arange(0, 360, 90)):
gaussians = gaussians_all_frame[:, t]
cam_poses = torch.from_numpy(orbit_camera(0, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
# cameras needed by gaussian rasterizer
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
rendered_image = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), bg_color=bg_color)['image']
rendered_image = rendered_image.squeeze(1)
rendered_image = F.interpolate(rendered_image, (256, 256))
rendered_image = rendered_image.permute(0,2,3,1).contiguous().float().cpu().numpy() # B H W C
render_img_V.append(rendered_image)
render_img_V = np.concatenate(render_img_V, axis=0) # V H W C
render_img_TV.append(render_img_V)
render_img_TV = np.stack(render_img_TV, axis=0) # T V H W C
ref_video = np.concatenate([np.stack([ref_video[ttt] for _ in range(opt.interpolate_rate)], 0) for ttt in range(ref_video.shape[0])], 0)
for tt in range(gaussians_all_frame_wo_inter.shape[1] -1 ):
curr_ref_video = deepcopy( ref_video[ tt * opt.interpolate_rate: tt * opt.interpolate_rate + interp_opt.num_frames ])
curr_ref_video[0, 1:] = render_img_TV[tt, 1:]
curr_ref_video[-1, 1:] = render_img_TV[tt+1, 1:]
curr_ref_video = torch.from_numpy(curr_ref_video).float().to(
device) # [4, 3, 256, 256]
images_input_interp = interpolate_tensors(curr_ref_video)
curr_ref_video[1:-1, :] = images_input_interp[1:-1, :]
input_image_interp = curr_ref_video.reshape([-1, *curr_ref_video.shape[2:]]).permute(0, 3, 1, 2).float().to(device) # [4, 3, 256, 256]
input_image_interp = F.interpolate(input_image_interp, size=(interp_opt.input_size, interp_opt.input_size), mode='bilinear',
align_corners=False)
input_image_interp = TF.normalize(input_image_interp, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)
input_image_interp = torch.cat([input_image_interp, interp_rays_embeddings], dim=1).unsqueeze(0) # [1, 4, 9, H, W]
end_time = time.time()
gaussians_interp_all_frame = model_interp.forward_gaussians(input_image_interp)
print(f"Interpolate forward pass takes {time.time()-end_time} s")
B, T, V = 1, gaussians_interp_all_frame.shape[0] // opt.batch_size, opt.num_views
gaussians_interp_all_frame = gaussians_interp_all_frame.reshape(B, T, *gaussians_interp_all_frame.shape[1:])
if tt > 0:
gaussians_interp_all_frame = gaussians_interp_all_frame[:, 1:]
gaussians_all_frame_all_run_w_interp.append(gaussians_interp_all_frame)
gaussians_all_frame_all_run.append(gaussians_all_frame_wo_inter)
start_t += opt.num_frames -1
mv_image = []
for v, azi in enumerate(np.arange(0, 360, 90)):
gaussians = gaussians_all_frame_wo_inter[:, -1]
cam_poses = torch.from_numpy(orbit_camera(0, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
# cameras needed by gaussian rasterizer
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
rendered_image = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), bg_color=bg_color)['image']
rendered_image = rendered_image.squeeze(1)
rendered_image = F.interpolate(rendered_image, (256, 256))
rendered_image = rendered_image.permute(0,2,3,1).contiguous().float().cpu().numpy()
mv_image.append(rendered_image)
mv_image = np.concatenate(mv_image, axis=0)
elif gaussians_all_frame_wo_inter.shape[1] > 0:
gaussians_all_frame_all_run.append(gaussians_all_frame_wo_inter)
start_t += opt.num_frames -1
else:
break
gaussians_all_frame_wo_interp = torch.cat(gaussians_all_frame_all_run, dim=1)
if USE_INTERPOLATION:
gaussians_all_frame_w_interp = torch.cat(gaussians_all_frame_all_run_w_interp, dim=1)
if USE_INTERPOLATION:
zip_dump = zip(["wo_interp", "w_interp"], [gaussians_all_frame_wo_interp, gaussians_all_frame_w_interp])
else:
zip_dump = zip(["wo_interp"], [gaussians_all_frame_wo_interp])
for sv_name, gaussians_all_frame in zip_dump:
if sv_name == "w_interp":
ANIM_FPS = FPS / downsample_rate * gaussians_all_frame_w_interp.shape[1] / gaussians_all_frame_wo_interp.shape[1]
else:
ANIM_FPS = FPS / downsample_rate
print(f"{sv_name} | input video fps: {FPS} | downsample rate: {downsample_rate} | animation fps: {ANIM_FPS} | output video fps: {VIDEO_FPS}")
render_img_TV = []
for t in range(gaussians_all_frame.shape[1]):
render_img_V = []
for v, azi in enumerate(np.arange(0, 360, 90)):
gaussians = gaussians_all_frame[:, t]
cam_poses = torch.from_numpy(orbit_camera(0, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
# cameras needed by gaussian rasterizer
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
result = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), bg_color=bg_color)
image = result['image']
alpha = result['alpha']
render_img_V.append((image.squeeze(1).permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8))
render_img_V = np.concatenate(render_img_V, axis=2)
render_img_TV.append(render_img_V)
render_img_TV = np.concatenate(render_img_TV, axis=0)
images = []
azimuth = np.arange(0, 360, 1*30/VIDEO_FPS, dtype=np.int32)
elevation = 0
t = 0
delta_t = ANIM_FPS / VIDEO_FPS
for azi in azimuth:
if azi in [0, 90, 180, 270]:
cam_poses = torch.from_numpy(orbit_camera(elevation, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
# cameras needed by gaussian rasterizer
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
for _ in range(45):
gaussians = gaussians_all_frame[:, int(t) % gaussians_all_frame.shape[1]]
t += delta_t
image = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), bg_color=bg_color)['image']
images.append((image.squeeze(1).permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8))
else:
gaussians = gaussians_all_frame[:, int(t) % gaussians_all_frame.shape[1]]
t += delta_t
cam_poses = torch.from_numpy(orbit_camera(elevation, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
# cameras needed by gaussian rasterizer
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
image = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), bg_color=bg_color)['image']
images.append((image.squeeze(1).permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8))
images = np.concatenate(images, axis=0)
torch.cuda.empty_cache()
imageio.mimwrite(os.path.join(opt.workspace, f'{sv_name}_{name}_fixed.mp4'), render_img_TV, fps=ANIM_FPS)
print("Fixed video saved.")
imageio.mimwrite(os.path.join(opt.workspace, f'{sv_name}_{name}.mp4'), images, fps=VIDEO_FPS)
print("Stop video saved.")
assert opt.test_path is not None
if os.path.isdir(opt.test_path):
file_paths = glob.glob(os.path.join(opt.test_path, "*"))
else:
file_paths = [opt.test_path]
for path in sorted(file_paths):
process(opt, path)