|
import torch |
|
|
|
print(torch.__version__) |
|
print(torch.version.cuda) |
|
print(torch.cuda.is_available()) |
|
|
|
import os, subprocess |
|
import uuid, tempfile |
|
from glob import glob |
|
|
|
env_list = os.environ['PATH'].split(':') |
|
env_list.append('/usr/local/cuda/bin') |
|
os.environ['PATH'] = ':'.join(env_list) |
|
os.environ['TORCH_CUDA_ARCH_LIST'] = '8.6' |
|
|
|
import gradio as gr |
|
from huggingface_hub import snapshot_download |
|
|
|
os.makedirs("pretrained", exist_ok=True) |
|
snapshot_download( |
|
repo_id = "jiawei011/L4GM", |
|
local_dir = "./pretrained" |
|
) |
|
|
|
|
|
examples_folder = "data_test" |
|
|
|
|
|
video_examples = [ |
|
os.path.join(examples_folder, file) |
|
for file in os.listdir(examples_folder) |
|
if os.path.isfile(os.path.join(examples_folder, file)) |
|
] |
|
|
|
|
|
def generate(input_video): |
|
|
|
unique_id = str(uuid.uuid4()) |
|
|
|
workdir = f"results_{unique_id}" |
|
recon_model = "pretrained/recon.safetensors" |
|
interp_model = "pretrained/interp.safetensors" |
|
num_frames = 16 |
|
test_path = input_video |
|
|
|
try: |
|
|
|
subprocess.run( |
|
[ |
|
"python", "infer_3d.py", "big", |
|
"--workspace", f"{workdir}", |
|
"--resume", f"{recon_model}", |
|
"--num_frames", f"1", |
|
"--test_path", f"{test_path}", |
|
], |
|
check=True |
|
) |
|
|
|
subprocess.run( |
|
[ |
|
"python", "infer_4d.py", "big", |
|
"--workspace", f"{workdir}", |
|
"--resume", f"{recon_model}", |
|
"--interpresume", f"{interp_model}", |
|
"--num_frames", f"{num_frames}", |
|
"--test_path", f"{test_path}", |
|
], |
|
check=True |
|
) |
|
|
|
|
|
output_videos = glob(os.path.join(workdir, "*.mp4")) |
|
print("Found videos:", output_videos) |
|
|
|
|
|
if len(output_videos) < 5: |
|
raise IndexError("Less than 5 .mp4 files found in the workdir.") |
|
|
|
|
|
selected_video = output_videos[4] |
|
print("Selected video:", selected_video) |
|
|
|
|
|
temp_dir = tempfile.mkdtemp() |
|
print("Temporary directory created:", temp_dir) |
|
|
|
|
|
new_video_path = os.path.join(temp_dir, os.path.basename(selected_video)) |
|
shutil.copy(selected_video, new_video_path) |
|
print(f"Copied {selected_video} to {new_video_path}") |
|
|
|
|
|
shutil.rmtree(workdir) |
|
print(f"Deleted workdir: {workdir}") |
|
|
|
|
|
return new_video_path |
|
|
|
except subprocess.CalledProcessError as e: |
|
raise gr.Error(f"Error during inference: {str(e)}") |
|
|
|
with gr.Blocks() as demo: |
|
with gr.Column(): |
|
gr.Markdown("# L4GM: Large 4D Gaussian Reconstruction Model") |
|
gr.HTML(""" |
|
<div style="display:flex;column-gap:4px;"> |
|
<a href="https://github.com/nv-tlabs/L4GM-official/tree/main"> |
|
<img src='https://img.shields.io/badge/GitHub-Repo-blue'> |
|
</a> |
|
<a href="https://research.nvidia.com/labs/toronto-ai/l4gm/"> |
|
<img src='https://img.shields.io/badge/Project-Page-green'> |
|
</a> |
|
<a href="https://arxiv.org/abs/2406.10324"> |
|
<img src='https://img.shields.io/badge/ArXiv-Paper-red'> |
|
</a> |
|
<a href="https://huggingface.co/spaces/fffiloni/L4GM-demo?duplicate=true"> |
|
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space"> |
|
</a> |
|
<a href="https://huggingface.co/fffiloni"> |
|
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm-dark.svg" alt="Follow me on HF"> |
|
</a> |
|
</div> |
|
""") |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_video = gr.Video(label="Input Video", interactive=False) |
|
submit_btn = gr.Button("Submit") |
|
with gr.Column(): |
|
|
|
output_result_4 = gr.Video(label="Result") |
|
|
|
gr.Examples( |
|
examples = video_examples, |
|
inputs = [input_video], |
|
examples_per_page = 3 |
|
) |
|
|
|
submit_btn.click( |
|
fn = generate, |
|
inputs = [input_video], |
|
outputs = [ |
|
output_result_4 |
|
] |
|
) |
|
|
|
demo.queue().launch(show_api=False, show_error=True) |
|
|