L4GM-demo / app.py
fffiloni's picture
Update app.py
d027ebe verified
raw
history blame
4.72 kB
import torch
print(torch.__version__)
print(torch.version.cuda)
print(torch.cuda.is_available())
import os, subprocess
import uuid, tempfile
from glob import glob
env_list = os.environ['PATH'].split(':')
env_list.append('/usr/local/cuda/bin')
os.environ['PATH'] = ':'.join(env_list)
os.environ['TORCH_CUDA_ARCH_LIST'] = '8.6'
import gradio as gr
from huggingface_hub import snapshot_download
os.makedirs("pretrained", exist_ok=True)
snapshot_download(
repo_id = "jiawei011/L4GM",
local_dir = "./pretrained"
)
# Folder containing example images
examples_folder = "data_test"
# Retrieve all file paths in the folder
video_examples = [
os.path.join(examples_folder, file)
for file in os.listdir(examples_folder)
if os.path.isfile(os.path.join(examples_folder, file))
]
def generate(input_video):
unique_id = str(uuid.uuid4())
workdir = f"results_{unique_id}"
recon_model = "pretrained/recon.safetensors"
interp_model = "pretrained/interp.safetensors"
num_frames = 16
test_path = input_video
try:
# Run the inference command
subprocess.run(
[
"python", "infer_3d.py", "big",
"--workspace", f"{workdir}",
"--resume", f"{recon_model}",
"--num_frames", f"1",
"--test_path", f"{test_path}",
],
check=True
)
subprocess.run(
[
"python", "infer_4d.py", "big",
"--workspace", f"{workdir}",
"--resume", f"{recon_model}",
"--interpresume", f"{interp_model}",
"--num_frames", f"{num_frames}",
"--test_path", f"{test_path}",
],
check=True
)
# Get all .mp4 files in the workdir
output_videos = glob(os.path.join(workdir, "*.mp4"))
print("Found videos:", output_videos)
# Check if the 5th video exists
if len(output_videos) < 5:
raise IndexError("Less than 5 .mp4 files found in the workdir.")
# Get the 5th video
selected_video = output_videos[4]
print("Selected video:", selected_video)
# Create a new temporary directory
temp_dir = tempfile.mkdtemp()
print("Temporary directory created:", temp_dir)
# Copy the selected video to the temporary directory
new_video_path = os.path.join(temp_dir, os.path.basename(selected_video))
shutil.copy(selected_video, new_video_path)
print(f"Copied {selected_video} to {new_video_path}")
# Delete the workdir folder
shutil.rmtree(workdir)
print(f"Deleted workdir: {workdir}")
# Return the new path of the copied video
return new_video_path
except subprocess.CalledProcessError as e:
raise gr.Error(f"Error during inference: {str(e)}")
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("# L4GM: Large 4D Gaussian Reconstruction Model")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/nv-tlabs/L4GM-official/tree/main">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://research.nvidia.com/labs/toronto-ai/l4gm/">
<img src='https://img.shields.io/badge/Project-Page-green'>
</a>
<a href="https://arxiv.org/abs/2406.10324">
<img src='https://img.shields.io/badge/ArXiv-Paper-red'>
</a>
<a href="https://huggingface.co/spaces/fffiloni/L4GM-demo?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
<a href="https://huggingface.co/fffiloni">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm-dark.svg" alt="Follow me on HF">
</a>
</div>
""")
with gr.Row():
with gr.Column():
input_video = gr.Video(label="Input Video", interactive=False)
submit_btn = gr.Button("Submit")
with gr.Column():
output_result_4 = gr.Video(label="Result")
gr.Examples(
examples = video_examples,
inputs = [input_video],
examples_per_page = 3
)
submit_btn.click(
fn = generate,
inputs = [input_video],
outputs = [
output_result_4
]
)
demo.queue().launch(show_api=False, show_error=True)