File size: 1,698 Bytes
c7ebc97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

import torch
import gradio as gr
from diffusers import DiffusionPipeline
from cog_sdxl.dataset_and_utils import TokenEmbeddingsHandler
from huggingface_hub import hf_hub_download

# Load the Stable Diffusion XL model
pipe = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    torch_dtype=torch.float16,
    variant="fp16",
).to("cuda")

# Load LoRA weights
pipe.load_lora_weights("fofr/sdxl-emoji", weight_name="lora.safetensors")

# Setup text encoders and tokenizers
text_encoders = [pipe.text_encoder, pipe.text_encoder_2]
tokenizers = [pipe.tokenizer, pipe.tokenizer_2]

# Load the emoji embeddings
embedding_path = hf_hub_download(repo_id="fofr/sdxl-emoji", filename="embeddings.pti", repo_type="model")
embhandler = TokenEmbeddingsHandler(text_encoders, tokenizers)
embhandler.load_embeddings(embedding_path)

# Gradio generation function
def generate_emoji(prompt, scale):
    # Add token embeddings to the prompt
    prompt = f"A <s0><s1> emoji of a {prompt}"
    
    # Generate the image using the diffusion pipeline
    images = pipe(prompt, cross_attention_kwargs={"scale": scale}).images
    
    # Return the generated image
    return images[0]

# Gradio Interface
interface = gr.Interface(
    fn=generate_emoji,
    inputs=[
        gr.Textbox(label="Description of the emoji (e.g., 'man', 'woman')", placeholder="Type here..."),
        gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.8, label="Cross Attention Scale")
    ],
    outputs="image",
    title="Emoji Generator",
    description="Generate custom emojis using Stable Diffusion XL with LoRA weights."
)

# Launch the interface
if __name__ == "__main__":
    interface.launch()