File size: 10,166 Bytes
df9bdb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import gradio as gr
import os
import subprocess
import numpy as np
import torch
import torch.nn.functional as F
import librosa
import av
from transformers import VivitImageProcessor, VivitForVideoClassification
from transformers import AutoConfig, Wav2Vec2ForSequenceClassification, AutoFeatureExtractor
from moviepy.editor import VideoFileClip
def get_emotion_from_filename(filename):
parts = filename.split('-')
emotion_code = int(parts[2])
emotion_labels = {
1: 'neutral',
3: 'happy',
4: 'sad',
5: 'angry',
6: 'fearful',
7: 'disgust'
}
return emotion_labels.get(emotion_code, None)
def separate_video_audio(file_path):
output_dir = './temp/'
video_path = os.path.join(output_dir, os.path.basename(file_path).replace('.mp4', '_video.mp4'))
audio_path = os.path.join(output_dir, os.path.basename(file_path).replace('.mp4', '_audio.wav'))
video_cmd = ['ffmpeg', '-loglevel', 'quiet', '-i', file_path, '-an', '-c:v', 'libx264', '-preset', 'ultrafast', video_path]
subprocess.run(video_cmd, check=True)
audio_cmd = ['ffmpeg', '-loglevel', 'quiet', '-i', file_path, '-vn', '-acodec', 'pcm_s16le', '-ar', '16000', audio_path]
subprocess.run(audio_cmd, check=True)
return video_path, audio_path
def delete_files_in_directory(directory):
for filename in os.listdir(directory):
file_path = os.path.join(directory, filename)
try:
if os.path.isfile(file_path):
os.remove(file_path)
except Exception as e:
print(f"Failed to delete {file_path}. Reason: {e}")
def process_video(file_path):
container = av.open(file_path)
indices = sample_frame_indices(clip_len=32, frame_sample_rate=2, seg_len=container.streams.video[0].frames)
video = read_video_pyav(container=container, indices=indices)
container.close()
return video
def read_video_pyav(container, indices):
frames = []
container.seek(0)
start_index = indices[0]
end_index = indices[-1]
for i, frame in enumerate(container.decode(video=0)):
if i > end_index:
break
if i >= start_index and i in indices:
frame = frame.reformat(width=224, height=224)
frames.append(frame)
return np.stack([x.to_ndarray(format="rgb24") for x in frames])
def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
converted_len = int(clip_len * frame_sample_rate)
end_idx = np.random.randint(converted_len, seg_len)
start_idx = end_idx - converted_len
indices = np.linspace(start_idx, end_idx, num=clip_len)
indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
return indices
def video_label_to_emotion(label):
label_map = {0: 'neutral', 1: 'happy', 2: 'sad', 3: 'angry', 4: 'fearful', 5: 'disgust'}
label_index = int(label.split('_')[1])
return label_map.get(label_index, "Unknown Label")
def predict_video(file_path, video_model, image_processor):
video = process_video(file_path)
inputs = image_processor(list(video), return_tensors="pt")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
inputs = inputs.to(device)
with torch.no_grad():
outputs = video_model(**inputs)
logits = outputs.logits
probs = F.softmax(logits, dim=-1).squeeze()
emotion_probabilities = {video_label_to_emotion(video_model.config.id2label[idx]): float(prob) for idx, prob in enumerate(probs)}
return emotion_probabilities
def audio_label_to_emotion(label):
label_map = {0: 'angry', 1: 'disgust', 2: 'fearful', 3: 'happy', 4: 'neutral', 5: 'sad'}
label_index = int(label.split('_')[1])
return label_map.get(label_index, "Unknown Label")
def preprocess_and_predict_audio(file_path, model, processor):
audio_array, _ = librosa.load(file_path, sr=16000)
inputs = processor(audio_array, sampling_rate=16000, return_tensors="pt", padding=True, max_length=75275)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
output = model(**inputs)
logits = output.logits
probabilities = F.softmax(logits, dim=-1)
emotion_probabilities = {audio_label_to_emotion(model.config.id2label[idx]): float(prob) for idx, prob in enumerate(probabilities[0])}
return emotion_probabilities
def averaging_method(video_prediction, audio_prediction):
combined_probabilities = {}
for label in set(video_prediction) | set(audio_prediction):
combined_probabilities[label] = (video_prediction.get(label, 0) + audio_prediction.get(label, 0)) / 2
consensus_label = max(combined_probabilities, key=combined_probabilities.get)
return consensus_label
def weighted_average_method(video_prediction, audio_prediction):
video_weight = 0.88
audio_weight = 0.6
combined_probabilities = {}
for label in set(video_prediction) | set(audio_prediction):
video_prob = video_prediction.get(label, 0)
audio_prob = audio_prediction.get(label, 0)
combined_probabilities[label] = (video_weight * video_prob + audio_weight * audio_prob) / (video_weight + audio_weight)
consensus_label = max(combined_probabilities, key=combined_probabilities.get)
return consensus_label
def confidence_level_method(video_prediction, audio_prediction, threshold=0.7):
highest_video_label = max(video_prediction, key=video_prediction.get)
highest_video_confidence = video_prediction[highest_video_label]
if highest_video_confidence >= threshold:
return highest_video_label
combined_probabilities = {}
for label in set(video_prediction) | set(audio_prediction):
video_prob = video_prediction.get(label, 0)
audio_prob = audio_prediction.get(label, 0)
combined_probabilities[label] = (video_prob + audio_prob) / 2
return max(combined_probabilities, key=combined_probabilities.get)
def dynamic_weighting_method(video_prediction, audio_prediction):
combined_probabilities = {}
for label in set(video_prediction) | set(audio_prediction):
video_prob = video_prediction.get(label, 0)
audio_prob = audio_prediction.get(label, 0)
video_confidence = video_prob / sum(video_prediction.values())
audio_confidence = audio_prob / sum(audio_prediction.values())
video_weight = video_confidence / (video_confidence + audio_confidence)
audio_weight = audio_confidence / (video_confidence + audio_confidence)
combined_probabilities[label] = (video_weight * video_prob + audio_weight * audio_prob)
return max(combined_probabilities, key=combined_probabilities.get)
def rule_based_method(video_prediction, audio_prediction, threshold=0.5):
highest_video_label = max(video_prediction, key=video_prediction.get)
highest_audio_label = max(audio_prediction, key=audio_prediction.get)
video_confidence = video_prediction[highest_video_label] / sum(video_prediction.values())
audio_confidence = audio_prediction[highest_audio_label] / sum(audio_prediction.values())
combined_probabilities = {}
for label in set(video_prediction) | set(audio_prediction):
video_prob = video_prediction.get(label, 0)
audio_prob = audio_prediction.get(label, 0)
combined_probabilities[label] = (video_prob + audio_prob) / 2
if (highest_video_label == highest_audio_label and video_confidence > threshold and audio_confidence > threshold):
return highest_video_label
elif video_confidence > audio_confidence:
return highest_video_label
elif audio_confidence > video_confidence:
return highest_audio_label
return max(combined_probabilities, key=combined_probabilities.get)
decision_frameworks = {
"Averaging": averaging_method,
"Weighted Average": weighted_average_method,
"Confidence Level": confidence_level_method,
"Dynamic Weighting": dynamic_weighting_method,
"Rule-Based": rule_based_method
}
# Define the prediction function
def predict(video_file, video_model_name, audio_model_name, framework_name):
image_processor = VivitImageProcessor.from_pretrained("google/vivit-b-16x2-kinetics400")
video_model = torch.load(video_model_name)
model_id = "facebook/wav2vec2-large"
config = AutoConfig.from_pretrained(model_id, num_labels=6)
audio_processor = AutoFeatureExtractor.from_pretrained(model_id)
audio_model = Wav2Vec2ForSequenceClassification.from_pretrained(model_id, config=config)
audio_model.load_state_dict(torch.load(audio_model_name))
audio_model.eval()
delete_directory_path = "./temp/"
# Separate video and audio
video_path, audio_path = separate_video_audio(video_file.name)
# Predict video
video_prediction = predict_video(video_path, video_model, image_processor)
# Predict audio
audio_prediction = preprocess_and_predict_audio(audio_path, audio_model, audio_processor)
# Use selected decision framework
framework_function = decision_frameworks[framework_name]
consensus_label = framework_function(video_prediction, audio_prediction)
# Clean up the temporary files
delete_files_in_directory(delete_directory_path)
return {
"Video Predictions": video_prediction,
"Audio Predictions": audio_prediction,
"Consensus Label": consensus_label
}
# Create Gradio Interface
inputs = [
gr.inputs.File(label="Upload Video", type="file"),
gr.inputs.Dropdown(["video_model_60_acc.pth", "video_model_80_acc.pth"], label="Select Video Model"),
gr.inputs.Dropdown(["audio_model_state_dict_6e.pth"], label="Select Audio Model"),
gr.inputs.Dropdown(list(decision_frameworks.keys()), label="Select Decision Framework")
]
outputs = [
gr.outputs.JSON(label="Predictions")
]
iface = gr.Interface(
fn=predict,
inputs=inputs,
outputs=outputs,
title="Video and Audio Emotion Prediction",
description="Upload a video to get emotion predictions from selected video and audio models."
)
iface.launch()
|