File size: 9,984 Bytes
e81015c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's Transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/llava/modeling_llava.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
from typing import TYPE_CHECKING, Optional

import torch
import transformers
import transformers.models
from transformers.activations import ACT2FN

from ...extras import logging


if TYPE_CHECKING:
    from transformers import LlavaConfig, PretrainedConfig, PreTrainedModel

    from ...hparams import FinetuningArguments, ModelArguments


logger = logging.get_logger(__name__)
transformers_logger = transformers.utils.logging.get_logger(__name__)


@dataclass
class CompositeModel:
    model_type: str
    projector_key: str
    vision_model_keys: list[str]
    language_model_keys: list[str]
    lora_conflict_keys: list[str]

    def get_projector(self, module: "torch.nn.Module") -> "torch.nn.Module":
        for key in self.projector_key.split("."):
            module = getattr(module, key)

        return module


COMPOSITE_MODELS: dict[str, "CompositeModel"] = {}


def _register_composite_model(
    model_type: str,
    projector_key: Optional[str] = None,
    vision_model_keys: Optional[list[str]] = None,
    language_model_keys: Optional[list[str]] = None,
    lora_conflict_keys: Optional[list[str]] = None,
):
    r"""Register a new composite model.

    Args:
        model_type: model type
        projector_key: multi_modal_projector
        vision_model_keys: vision_tower
        language_model_keys: language_model
        lora_conflict_keys: None

    """
    COMPOSITE_MODELS[model_type] = CompositeModel(
        model_type=model_type,
        projector_key=projector_key or "multi_modal_projector",
        vision_model_keys=vision_model_keys or ["vision_tower"],
        language_model_keys=language_model_keys or ["language_model"],
        lora_conflict_keys=lora_conflict_keys or [],
    )


class LlavaMultiModalProjectorForYiVL(torch.nn.Module):
    def __init__(self, config: "LlavaConfig") -> None:
        super().__init__()

        self.config = config
        if config is None:
            return

        self.linear_1 = torch.nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True)
        self.linear_2 = torch.nn.LayerNorm(config.text_config.hidden_size, bias=True)
        self.linear_3 = torch.nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
        self.linear_4 = torch.nn.LayerNorm(config.text_config.hidden_size, bias=True)
        self.act = ACT2FN[config.projector_hidden_act]

    def forward(self, image_features: "torch.Tensor") -> "torch.Tensor":
        hidden_states = self.linear_1(image_features)
        hidden_states = self.linear_2(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states = self.linear_3(hidden_states)
        hidden_states = self.linear_4(hidden_states)
        if hidden_states.dtype == torch.float32:
            if torch.is_autocast_enabled():
                target_dtype = torch.get_autocast_gpu_dtype()
            elif hasattr(self.config, "_pre_quantization_dtype"):
                target_dtype = self.config._pre_quantization_dtype
            else:
                target_dtype = self.linear_1.weight.dtype

            transformers_logger.warning_once("The hidden states seems to be silently casted in float32.")
            hidden_states = hidden_states.to(target_dtype)

        return hidden_states


class LlavaMultiModalProjectorForYiVLForVLLM(LlavaMultiModalProjectorForYiVL):
    def __init__(self, vision_hidden_size: int, text_hidden_size: int, projector_hidden_act: str) -> None:
        super().__init__(config=None)

        self.linear_1 = torch.nn.Linear(vision_hidden_size, text_hidden_size, bias=True)
        self.linear_2 = torch.nn.LayerNorm(text_hidden_size, bias=True)
        self.linear_3 = torch.nn.Linear(text_hidden_size, text_hidden_size, bias=True)
        self.linear_4 = torch.nn.LayerNorm(text_hidden_size, bias=True)
        self.act = ACT2FN[projector_hidden_act]


def autocast_projector_dtype(model: "PreTrainedModel", model_args: "ModelArguments") -> None:
    r"""Cast projector output to half precision for fine-tuning quantized VLMs."""

    def _mm_projector_forward_post_hook(
        module: "torch.nn.Module", args: tuple["torch.Tensor"], output: "torch.Tensor"
    ) -> "torch.Tensor":
        return output.to(model_args.compute_dtype)

    if getattr(model, "quantization_method", None):
        model_type = getattr(model.config, "model_type", None)
        if model_type in COMPOSITE_MODELS:
            mm_projector = COMPOSITE_MODELS[model_type].get_projector(model)
        else:
            return

        logger.info_rank0(f"Casting multimodal projector outputs in {model_args.compute_dtype}.")
        mm_projector.register_forward_hook(_mm_projector_forward_post_hook)


def configure_visual_model(config: "PretrainedConfig") -> None:
    r"""Patch VLMs before loading them."""
    if getattr(config, "text_config", None) and not getattr(config, "hidden_size", None):
        # required for ds zero3 and valuehead models
        setattr(config, "hidden_size", getattr(config.text_config, "hidden_size", None))

    if getattr(config, "is_yi_vl_derived_model", None):
        logger.info_rank0("Detected Yi-VL model, applying projector patch.")
        transformers.models.llava.modeling_llava.LlavaMultiModalProjector = LlavaMultiModalProjectorForYiVL


def get_forbidden_modules(config: "PretrainedConfig", finetuning_args: "FinetuningArguments") -> set[str]:
    r"""Freeze vision tower and language model for VLM full/freeze tuning."""
    model_type = getattr(config, "model_type", None)
    forbidden_modules = set()
    if model_type in COMPOSITE_MODELS:
        if finetuning_args.freeze_vision_tower:
            vision_model_keys = COMPOSITE_MODELS[model_type].vision_model_keys
            logger.info_rank0(f"Set vision model not trainable: {vision_model_keys}.")
            forbidden_modules.update(vision_model_keys)

        if finetuning_args.freeze_multi_modal_projector:
            projector_key = COMPOSITE_MODELS[model_type].projector_key
            logger.info_rank0(f"Set multi model projector not trainable: {projector_key}.")
            forbidden_modules.add(projector_key)

        if finetuning_args.freeze_language_model:
            language_model_keys = COMPOSITE_MODELS[model_type].language_model_keys
            logger.info_rank0(f"Set language model not trainable: {language_model_keys}.")
            forbidden_modules.update(language_model_keys)

    return forbidden_modules


def patch_target_modules(
    model: "PreTrainedModel", finetuning_args: "FinetuningArguments", target_modules: list[str]
) -> list[str]:
    r"""Freeze vision tower for VLM LoRA tuning."""
    model_type = getattr(model.config, "model_type", None)
    if model_type in COMPOSITE_MODELS:
        forbidden_modules = get_forbidden_modules(model.config, finetuning_args)
        forbidden_modules.update(COMPOSITE_MODELS[model_type].lora_conflict_keys)
        module_names = []
        for name, _ in model.named_modules():
            if any(target_module in name for target_module in target_modules) and not any(
                forbidden_module in name for forbidden_module in forbidden_modules
            ):
                module_names.append(name)

        return module_names
    else:
        return target_modules


_register_composite_model(
    model_type="internvl",
)


_register_composite_model(
    model_type="gemma3",
)


_register_composite_model(
    model_type="llama4",
    vision_model_keys=["vision_model"],
)


_register_composite_model(
    model_type="llava",
)


_register_composite_model(
    model_type="llava_next",
)


_register_composite_model(
    model_type="llava_next_video",
)


_register_composite_model(
    model_type="minicpmv",
    projector_key="resampler",
    vision_model_keys=["vpm"],
    language_model_keys=["llm"],
)


_register_composite_model(
    model_type="minicpmo",
    projector_key="resampler",
    vision_model_keys=["vpm", "apm", "audio_avg_pooler", "audio_projection_layer", "tts"],
    language_model_keys=["llm"],
    lora_conflict_keys=["audio_projection_layer"],
)


_register_composite_model(
    model_type="paligemma",
)


_register_composite_model(
    model_type="video_llava",
)


_register_composite_model(
    model_type="mllama",
    vision_model_keys=["vision_model"],
)


_register_composite_model(
    model_type="qwen2_audio",
    vision_model_keys=["audio_tower"],
)


_register_composite_model(
    model_type="qwen2_5_omni_thinker",
    projector_key="visual.merger",
    vision_model_keys=["visual.patch_embed", "visual.blocks", "audio_tower"],
    language_model_keys=["model", "lm_head"],
    lora_conflict_keys=["patch_embed"],
)


_register_composite_model(
    model_type="qwen2_vl",
    projector_key="visual.merger",
    vision_model_keys=["visual.patch_embed", "visual.blocks"],
    language_model_keys=["model", "lm_head"],
    lora_conflict_keys=["patch_embed"],
)


_register_composite_model(
    model_type="qwen2_5_vl",
    projector_key="visual.merger",
    vision_model_keys=["visual.patch_embed", "visual.blocks"],
    language_model_keys=["model", "lm_head"],
    lora_conflict_keys=["patch_embed"],
)