Spaces:
Running
Running
File size: 9,984 Bytes
e81015c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's Transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/llava/modeling_llava.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import TYPE_CHECKING, Optional
import torch
import transformers
import transformers.models
from transformers.activations import ACT2FN
from ...extras import logging
if TYPE_CHECKING:
from transformers import LlavaConfig, PretrainedConfig, PreTrainedModel
from ...hparams import FinetuningArguments, ModelArguments
logger = logging.get_logger(__name__)
transformers_logger = transformers.utils.logging.get_logger(__name__)
@dataclass
class CompositeModel:
model_type: str
projector_key: str
vision_model_keys: list[str]
language_model_keys: list[str]
lora_conflict_keys: list[str]
def get_projector(self, module: "torch.nn.Module") -> "torch.nn.Module":
for key in self.projector_key.split("."):
module = getattr(module, key)
return module
COMPOSITE_MODELS: dict[str, "CompositeModel"] = {}
def _register_composite_model(
model_type: str,
projector_key: Optional[str] = None,
vision_model_keys: Optional[list[str]] = None,
language_model_keys: Optional[list[str]] = None,
lora_conflict_keys: Optional[list[str]] = None,
):
r"""Register a new composite model.
Args:
model_type: model type
projector_key: multi_modal_projector
vision_model_keys: vision_tower
language_model_keys: language_model
lora_conflict_keys: None
"""
COMPOSITE_MODELS[model_type] = CompositeModel(
model_type=model_type,
projector_key=projector_key or "multi_modal_projector",
vision_model_keys=vision_model_keys or ["vision_tower"],
language_model_keys=language_model_keys or ["language_model"],
lora_conflict_keys=lora_conflict_keys or [],
)
class LlavaMultiModalProjectorForYiVL(torch.nn.Module):
def __init__(self, config: "LlavaConfig") -> None:
super().__init__()
self.config = config
if config is None:
return
self.linear_1 = torch.nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True)
self.linear_2 = torch.nn.LayerNorm(config.text_config.hidden_size, bias=True)
self.linear_3 = torch.nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
self.linear_4 = torch.nn.LayerNorm(config.text_config.hidden_size, bias=True)
self.act = ACT2FN[config.projector_hidden_act]
def forward(self, image_features: "torch.Tensor") -> "torch.Tensor":
hidden_states = self.linear_1(image_features)
hidden_states = self.linear_2(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.linear_3(hidden_states)
hidden_states = self.linear_4(hidden_states)
if hidden_states.dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.linear_1.weight.dtype
transformers_logger.warning_once("The hidden states seems to be silently casted in float32.")
hidden_states = hidden_states.to(target_dtype)
return hidden_states
class LlavaMultiModalProjectorForYiVLForVLLM(LlavaMultiModalProjectorForYiVL):
def __init__(self, vision_hidden_size: int, text_hidden_size: int, projector_hidden_act: str) -> None:
super().__init__(config=None)
self.linear_1 = torch.nn.Linear(vision_hidden_size, text_hidden_size, bias=True)
self.linear_2 = torch.nn.LayerNorm(text_hidden_size, bias=True)
self.linear_3 = torch.nn.Linear(text_hidden_size, text_hidden_size, bias=True)
self.linear_4 = torch.nn.LayerNorm(text_hidden_size, bias=True)
self.act = ACT2FN[projector_hidden_act]
def autocast_projector_dtype(model: "PreTrainedModel", model_args: "ModelArguments") -> None:
r"""Cast projector output to half precision for fine-tuning quantized VLMs."""
def _mm_projector_forward_post_hook(
module: "torch.nn.Module", args: tuple["torch.Tensor"], output: "torch.Tensor"
) -> "torch.Tensor":
return output.to(model_args.compute_dtype)
if getattr(model, "quantization_method", None):
model_type = getattr(model.config, "model_type", None)
if model_type in COMPOSITE_MODELS:
mm_projector = COMPOSITE_MODELS[model_type].get_projector(model)
else:
return
logger.info_rank0(f"Casting multimodal projector outputs in {model_args.compute_dtype}.")
mm_projector.register_forward_hook(_mm_projector_forward_post_hook)
def configure_visual_model(config: "PretrainedConfig") -> None:
r"""Patch VLMs before loading them."""
if getattr(config, "text_config", None) and not getattr(config, "hidden_size", None):
# required for ds zero3 and valuehead models
setattr(config, "hidden_size", getattr(config.text_config, "hidden_size", None))
if getattr(config, "is_yi_vl_derived_model", None):
logger.info_rank0("Detected Yi-VL model, applying projector patch.")
transformers.models.llava.modeling_llava.LlavaMultiModalProjector = LlavaMultiModalProjectorForYiVL
def get_forbidden_modules(config: "PretrainedConfig", finetuning_args: "FinetuningArguments") -> set[str]:
r"""Freeze vision tower and language model for VLM full/freeze tuning."""
model_type = getattr(config, "model_type", None)
forbidden_modules = set()
if model_type in COMPOSITE_MODELS:
if finetuning_args.freeze_vision_tower:
vision_model_keys = COMPOSITE_MODELS[model_type].vision_model_keys
logger.info_rank0(f"Set vision model not trainable: {vision_model_keys}.")
forbidden_modules.update(vision_model_keys)
if finetuning_args.freeze_multi_modal_projector:
projector_key = COMPOSITE_MODELS[model_type].projector_key
logger.info_rank0(f"Set multi model projector not trainable: {projector_key}.")
forbidden_modules.add(projector_key)
if finetuning_args.freeze_language_model:
language_model_keys = COMPOSITE_MODELS[model_type].language_model_keys
logger.info_rank0(f"Set language model not trainable: {language_model_keys}.")
forbidden_modules.update(language_model_keys)
return forbidden_modules
def patch_target_modules(
model: "PreTrainedModel", finetuning_args: "FinetuningArguments", target_modules: list[str]
) -> list[str]:
r"""Freeze vision tower for VLM LoRA tuning."""
model_type = getattr(model.config, "model_type", None)
if model_type in COMPOSITE_MODELS:
forbidden_modules = get_forbidden_modules(model.config, finetuning_args)
forbidden_modules.update(COMPOSITE_MODELS[model_type].lora_conflict_keys)
module_names = []
for name, _ in model.named_modules():
if any(target_module in name for target_module in target_modules) and not any(
forbidden_module in name for forbidden_module in forbidden_modules
):
module_names.append(name)
return module_names
else:
return target_modules
_register_composite_model(
model_type="internvl",
)
_register_composite_model(
model_type="gemma3",
)
_register_composite_model(
model_type="llama4",
vision_model_keys=["vision_model"],
)
_register_composite_model(
model_type="llava",
)
_register_composite_model(
model_type="llava_next",
)
_register_composite_model(
model_type="llava_next_video",
)
_register_composite_model(
model_type="minicpmv",
projector_key="resampler",
vision_model_keys=["vpm"],
language_model_keys=["llm"],
)
_register_composite_model(
model_type="minicpmo",
projector_key="resampler",
vision_model_keys=["vpm", "apm", "audio_avg_pooler", "audio_projection_layer", "tts"],
language_model_keys=["llm"],
lora_conflict_keys=["audio_projection_layer"],
)
_register_composite_model(
model_type="paligemma",
)
_register_composite_model(
model_type="video_llava",
)
_register_composite_model(
model_type="mllama",
vision_model_keys=["vision_model"],
)
_register_composite_model(
model_type="qwen2_audio",
vision_model_keys=["audio_tower"],
)
_register_composite_model(
model_type="qwen2_5_omni_thinker",
projector_key="visual.merger",
vision_model_keys=["visual.patch_embed", "visual.blocks", "audio_tower"],
language_model_keys=["model", "lm_head"],
lora_conflict_keys=["patch_embed"],
)
_register_composite_model(
model_type="qwen2_vl",
projector_key="visual.merger",
vision_model_keys=["visual.patch_embed", "visual.blocks"],
language_model_keys=["model", "lm_head"],
lora_conflict_keys=["patch_embed"],
)
_register_composite_model(
model_type="qwen2_5_vl",
projector_key="visual.merger",
vision_model_keys=["visual.patch_embed", "visual.blocks"],
language_model_keys=["model", "lm_head"],
lora_conflict_keys=["patch_embed"],
)
|