File size: 9,256 Bytes
e81015c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's Transformers and Optimum library.
# https://github.com/huggingface/transformers/blob/v4.41.0/src/transformers/utils/quantization_config.py
# https://github.com/huggingface/optimum/blob/v1.20.0/optimum/gptq/data.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import random
from typing import TYPE_CHECKING, Any

import torch
from datasets import load_dataset
from transformers import BitsAndBytesConfig, EetqConfig, GPTQConfig, HqqConfig
from transformers.integrations import is_deepspeed_zero3_enabled
from transformers.modeling_utils import is_fsdp_enabled

from ...extras import logging
from ...extras.constants import FILEEXT2TYPE, QuantizationMethod
from ...extras.misc import check_version, get_current_device


if TYPE_CHECKING:
    from transformers import PretrainedConfig, PreTrainedTokenizer

    from ...hparams import ModelArguments


logger = logging.get_logger(__name__)


def _get_quantization_dataset(tokenizer: "PreTrainedTokenizer", model_args: "ModelArguments") -> list[dict[str, Any]]:
    r"""Prepare the tokenized dataset to perform AutoGPTQ. Do not use tensor output for JSON serialization."""
    if os.path.isfile(model_args.export_quantization_dataset):
        data_path = FILEEXT2TYPE.get(model_args.export_quantization_dataset.split(".")[-1], None)
        data_files = model_args.export_quantization_dataset
    else:
        data_path = model_args.export_quantization_dataset
        data_files = None

    dataset = load_dataset(
        path=data_path,
        data_files=data_files,
        split="train",
        cache_dir=model_args.cache_dir,
        token=model_args.hf_hub_token,
    )

    samples = []
    maxlen = model_args.export_quantization_maxlen
    for _ in range(model_args.export_quantization_nsamples):
        n_try = 0
        while True:
            if n_try > 100:
                raise ValueError("Cannot find satisfying example, considering decrease `export_quantization_maxlen`.")

            sample_idx = random.randint(0, len(dataset) - 1)
            sample: dict[str, torch.Tensor] = tokenizer(dataset[sample_idx]["text"], return_tensors="pt")
            n_try += 1
            if sample["input_ids"].size(1) > maxlen:
                break  # TODO: fix large maxlen

        word_idx = random.randint(0, sample["input_ids"].size(1) - maxlen - 1)
        input_ids = sample["input_ids"][:, word_idx : word_idx + maxlen]
        attention_mask = sample["attention_mask"][:, word_idx : word_idx + maxlen]
        samples.append({"input_ids": input_ids.tolist(), "attention_mask": attention_mask.tolist()})

    return samples


def configure_quantization(
    config: "PretrainedConfig",
    tokenizer: "PreTrainedTokenizer",
    model_args: "ModelArguments",
    init_kwargs: dict[str, Any],
) -> None:
    r"""Priority: PTQ-quantized (train/infer) > AutoGPTQ (export) > On-the-fly quantization (train/infer)."""
    if getattr(config, "quantization_config", None):  # ptq
        if model_args.quantization_bit is not None:
            logger.warning_rank0("`quantization_bit` will not affect on the PTQ-quantized models.")

        if is_deepspeed_zero3_enabled() or is_fsdp_enabled():
            raise ValueError("DeepSpeed ZeRO-3 or FSDP is incompatible with PTQ-quantized models.")

        quantization_config: dict[str, Any] = getattr(config, "quantization_config", None)
        quant_method = quantization_config.get("quant_method", "")

        if quant_method == QuantizationMethod.GPTQ:
            check_version("auto_gptq>=0.5.0", mandatory=True)
            quantization_config.pop("disable_exllama", None)  # remove deprecated args
            quantization_config["use_exllama"] = False  # disable exllama

        if quant_method == QuantizationMethod.AWQ:
            check_version("autoawq", mandatory=True)

        if quant_method == QuantizationMethod.AQLM:
            check_version("aqlm>=1.1.0", mandatory=True)
            quantization_config["bits"] = 2

        quant_bits = quantization_config.get("bits", "?")
        logger.info_rank0(f"Loading {quant_bits}-bit {quant_method.upper()}-quantized model.")

    elif model_args.export_quantization_bit is not None:  # auto-gptq
        if model_args.export_quantization_bit not in [8, 4, 3, 2]:
            raise ValueError("AutoGPTQ only accepts 2/3/4/8-bit quantization.")

        check_version("optimum>=1.17.0", mandatory=True)
        check_version("auto_gptq>=0.5.0", mandatory=True)
        from accelerate.utils import get_max_memory

        if getattr(config, "model_type", None) == "chatglm":
            raise ValueError("ChatGLM model is not supported yet.")

        try:
            from optimum.gptq import utils as gq_utils

            if "language_model.model.layers" not in gq_utils.BLOCK_PATTERNS:
                gq_utils.BLOCK_PATTERNS.insert(0, "language_model.model.layers")
        except ImportError:
            pass

        block_name_to_quantize = None
        if getattr(config, "model_type", None) in ["gemma3", "paligemma"]:
            block_name_to_quantize = "language_model.model.layers"

        init_kwargs["quantization_config"] = GPTQConfig(
            bits=model_args.export_quantization_bit,
            tokenizer=tokenizer,
            dataset=_get_quantization_dataset(tokenizer, model_args),
            block_name_to_quantize=block_name_to_quantize,
        )
        init_kwargs["device_map"] = "auto"
        init_kwargs["max_memory"] = get_max_memory()
        logger.info_rank0(f"Quantizing model to {model_args.export_quantization_bit} bit with AutoGPTQ.")

    elif model_args.quantization_bit is not None:  # on-the-fly
        if model_args.quantization_method == QuantizationMethod.BNB:
            if model_args.quantization_bit == 8:
                check_version("bitsandbytes>=0.37.0", mandatory=True)
                init_kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True)
            elif model_args.quantization_bit == 4:
                check_version("bitsandbytes>=0.39.0", mandatory=True)
                init_kwargs["quantization_config"] = BitsAndBytesConfig(
                    load_in_4bit=True,
                    bnb_4bit_compute_dtype=model_args.compute_dtype,
                    bnb_4bit_use_double_quant=model_args.double_quantization,
                    bnb_4bit_quant_type=model_args.quantization_type,
                    bnb_4bit_quant_storage=model_args.compute_dtype,  # crucial for fsdp+qlora
                )
            else:
                raise ValueError("Bitsandbytes only accepts 4-bit or 8-bit quantization.")

            # Do not assign device map if:
            # 1. deepspeed zero3 or fsdp (train)
            # 2. auto quantization device map (inference)
            if is_deepspeed_zero3_enabled() or is_fsdp_enabled() or model_args.quantization_device_map == "auto":
                if model_args.quantization_bit != 4:
                    raise ValueError("Only 4-bit quantized model can use fsdp+qlora or auto device map.")

                check_version("bitsandbytes>=0.43.0", mandatory=True)
            else:
                init_kwargs["device_map"] = {"": get_current_device()}  # change auto device map for inference

            logger.info_rank0(f"Quantizing model to {model_args.quantization_bit} bit with bitsandbytes.")
        elif model_args.quantization_method == QuantizationMethod.HQQ:
            if model_args.quantization_bit not in [8, 6, 5, 4, 3, 2, 1]:
                raise ValueError("HQQ only accepts 1/2/3/4/5/6/8-bit quantization.")

            if is_deepspeed_zero3_enabled() or is_fsdp_enabled():
                raise ValueError("HQQ quantization is incompatible with DeepSpeed ZeRO-3 or FSDP.")

            check_version("hqq", mandatory=True)
            init_kwargs["quantization_config"] = HqqConfig(
                nbits=model_args.quantization_bit, quant_zero=False, quant_scale=False, axis=0
            )  # use ATEN kernel (axis=0) for performance
            logger.info_rank0(f"Quantizing model to {model_args.quantization_bit} bit with HQQ.")
        elif model_args.quantization_method == QuantizationMethod.EETQ:
            if model_args.quantization_bit != 8:
                raise ValueError("EETQ only accepts 8-bit quantization.")

            if is_deepspeed_zero3_enabled() or is_fsdp_enabled():
                raise ValueError("EETQ quantization is incompatible with DeepSpeed ZeRO-3 or FSDP.")

            check_version("eetq", mandatory=True)
            init_kwargs["quantization_config"] = EetqConfig()
            logger.info_rank0(f"Quantizing model to {model_args.quantization_bit} bit with EETQ.")