File size: 4,177 Bytes
e81015c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# Copyright 2025 Musab Gultekin and the LlamaFactory team.
#
# This code is based on the Musab Gultekin's functionary library.
# https://github.com/MeetKai/functionary/blob/main/functionary/train/packing/monkey_patch_packing.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# MIT License
#
# Copyright (c) 2023 Musab Gultekin
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

from typing import TYPE_CHECKING

import torch
import torch.nn.functional as F

from ...extras import logging


if TYPE_CHECKING:
    from ...hparams import ModelArguments


logger = logging.get_logger(__name__)


def get_seqlens_in_batch(attention_mask: "torch.Tensor") -> "torch.Tensor":
    r"""Get the sequnce lengths in the current batch.

    e.g.
    ```python
    # input
    [
        [1, 1, 2, 2, 2, 0],
        [1, 2, 2, 3, 3, 3],
    ]
    # output
    [2, 3, 1, 2, 3]
    ```
    """
    bsz = attention_mask.size(0)
    dtype, device = attention_mask.dtype, attention_mask.device
    max_num = torch.max(attention_mask).item()
    counts: torch.Tensor = torch.zeros((bsz, max_num), dtype=dtype, device=device)
    for i in range(max_num):
        counts[:, i] = torch.sum(attention_mask == (i + 1), dim=-1)

    counts = counts.flatten()
    seqlens = counts[counts.nonzero().squeeze(dim=-1)]
    return seqlens


def get_unpad_data(attention_mask: "torch.Tensor") -> tuple["torch.Tensor", "torch.Tensor", int]:
    r"""Prepare the indices and seqlens for flash attn varlen function.

    Returns:
        indices: indices of non-masked tokens from the flattened sequence.
        cu_seqlens: the cumulative sequence lengths in the current batch, always starts from 0.
        max_seqlen_in_batch: the largest seqlen in the current batch.

    e.g.
    ```python
    # input
    [
        [1, 1, 2, 2, 2, 0],
        [1, 2, 2, 3, 3, 3],
    ]
    # output
    [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11]
    [0, 2, 5, 6, 8, 11]
    3
    ```

    """
    seqlens_in_batch = get_seqlens_in_batch(attention_mask)
    indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
    max_seqlen_in_batch = seqlens_in_batch.max().item()
    cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
    return indices, cu_seqlens, max_seqlen_in_batch


def configure_packing(model_args: "ModelArguments", is_trainable: bool) -> None:
    if not is_trainable or not model_args.block_diag_attn:
        return

    import transformers.modeling_flash_attention_utils

    transformers.modeling_flash_attention_utils._get_unpad_data = get_unpad_data
    logger.info_rank0("Using block diagonal attention for sequence packing without cross-attention.")