File size: 3,966 Bytes
e81015c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
from typing import TYPE_CHECKING

from ...extras import logging


if TYPE_CHECKING:
    from transformers import PretrainedConfig

    from ...hparams import ModelArguments


logger = logging.get_logger(__name__)


def apply_liger_kernel(
    config: "PretrainedConfig",
    model_args: "ModelArguments",
    is_trainable: bool,
    require_logits: bool,
) -> None:
    if not is_trainable or not model_args.enable_liger_kernel:
        return

    model_type = getattr(config, "model_type", None)
    if model_type == "gemma":
        from liger_kernel.transformers import apply_liger_kernel_to_gemma as apply_liger_kernel
    elif model_type == "gemma2":
        from liger_kernel.transformers import apply_liger_kernel_to_gemma2 as apply_liger_kernel
    elif model_type == "gemma3":
        from liger_kernel.transformers import apply_liger_kernel_to_gemma3 as apply_liger_kernel
    elif model_type == "gemma3_text":
        from liger_kernel.transformers import apply_liger_kernel_to_gemma3_text as apply_liger_kernel
    elif model_type == "glm4":
        from liger_kernel.transformers import apply_liger_kernel_to_glm4 as apply_liger_kernel
    elif model_type == "granite":
        from liger_kernel.transformers import apply_liger_kernel_to_granite as apply_liger_kernel
    elif model_type == "llama":
        from liger_kernel.transformers import apply_liger_kernel_to_llama as apply_liger_kernel
    elif model_type == "llava":
        from liger_kernel.transformers import apply_liger_kernel_to_llava as apply_liger_kernel
    elif model_type == "mistral":
        from liger_kernel.transformers import apply_liger_kernel_to_mistral as apply_liger_kernel
    elif model_type == "mixtral":
        from liger_kernel.transformers import apply_liger_kernel_to_mixtral as apply_liger_kernel
    elif model_type == "mllama":
        from liger_kernel.transformers import apply_liger_kernel_to_mllama as apply_liger_kernel
    elif model_type == "olmo2":
        from liger_kernel.transformers import apply_liger_kernel_to_olmo2 as apply_liger_kernel
    elif model_type == "paligemma":
        from liger_kernel.transformers import apply_liger_kernel_to_paligemma as apply_liger_kernel
    elif model_type == "phi3":
        from liger_kernel.transformers import apply_liger_kernel_to_phi3 as apply_liger_kernel
    elif model_type == "qwen2":
        from liger_kernel.transformers import apply_liger_kernel_to_qwen2 as apply_liger_kernel
    elif model_type == "qwen2_vl":
        from liger_kernel.transformers import apply_liger_kernel_to_qwen2_vl as apply_liger_kernel
    elif model_type == "qwen2_5_vl":
        from liger_kernel.transformers import apply_liger_kernel_to_qwen2_5_vl as apply_liger_kernel
    elif model_type == "qwen3":
        from liger_kernel.transformers import apply_liger_kernel_to_qwen3 as apply_liger_kernel
    else:
        logger.warning_rank0("Current model does not support liger kernel.")
        return

    if require_logits and "fused_linear_cross_entropy" in inspect.signature(apply_liger_kernel).parameters:
        logger.info_rank0("Current training stage does not support chunked cross entropy.")
        kwargs = {"fused_linear_cross_entropy": False, "cross_entropy": True}
    else:
        kwargs = {}

    apply_liger_kernel(**kwargs)
    logger.info_rank0("Liger kernel has been applied to the model.")