File size: 14,016 Bytes
17b0b49
 
 
 
 
 
 
 
2d2d2d9
 
4ebcec2
17b0b49
86ab63d
17b0b49
86ab63d
17b0b49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86ab63d
17b0b49
 
 
 
 
 
86ab63d
17b0b49
 
86ab63d
17b0b49
 
86ab63d
17b0b49
 
 
 
 
86ab63d
17b0b49
 
 
 
 
86ab63d
 
17b0b49
 
 
86ab63d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17b0b49
 
86ab63d
 
17b0b49
2d2d2d9
 
 
 
 
 
 
 
 
 
 
 
 
 
17b0b49
 
 
 
2d2d2d9
17b0b49
2d2d2d9
 
 
 
 
17b0b49
2d2d2d9
 
 
 
 
17b0b49
2d2d2d9
 
 
 
17b0b49
2d2d2d9
17b0b49
2d2d2d9
17b0b49
2d2d2d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17b0b49
2d2d2d9
 
 
 
17b0b49
2d2d2d9
17b0b49
2d2d2d9
 
 
 
 
 
 
 
 
 
17b0b49
2d2d2d9
 
17b0b49
2d2d2d9
 
 
 
 
17b0b49
 
 
86ab63d
17b0b49
 
 
 
2d2d2d9
 
 
 
17b0b49
2d2d2d9
 
 
 
 
17b0b49
2d2d2d9
 
17b0b49
 
 
4ebcec2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17b0b49
86ab63d
17b0b49
 
86ab63d
 
17b0b49
 
 
 
 
 
 
86ab63d
 
 
 
17b0b49
 
 
 
2d2d2d9
 
b240ed0
 
 
 
 
 
 
 
 
 
 
 
 
2d2d2d9
 
 
 
 
 
86ab63d
2d2d2d9
 
4ebcec2
2d2d2d9
 
86ab63d
2d2d2d9
17b0b49
2d2d2d9
 
 
 
 
17b0b49
2d2d2d9
 
 
 
 
 
17b0b49
2d2d2d9
 
 
 
b240ed0
2d2d2d9
 
 
 
 
 
 
 
 
4ebcec2
2d2d2d9
4ebcec2
 
2d2d2d9
4ebcec2
 
 
 
 
17b0b49
4ebcec2
 
17b0b49
4ebcec2
 
 
 
 
 
17b0b49
4ebcec2
 
 
 
 
2d2d2d9
4ebcec2
86ab63d
4ebcec2
 
 
 
 
 
 
2d2d2d9
4ebcec2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86ab63d
 
17b0b49
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import streamlit as st
import google.generativeai as genai
from PIL import Image
import os
from dotenv import load_dotenv
import PyPDF2
import io
from datetime import datetime
import pandas as pd
from collections import defaultdict
import re

# Page configuration
st.set_page_config(
    page_title="Cornea AI Pentacam Analyzer",
    page_icon="👁️",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Load environment variables
load_dotenv()

# Configure Gemini API
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
model = genai.GenerativeModel("gemini-2.0-flash-exp")

# Custom CSS
st.markdown("""
    <style>
    .main {
        padding: 2rem;
    }
    .stButton>button {
        width: 100%;
        background-color: #2E86C1;
        color: white;
        padding: 0.5rem;
        margin-top: 1rem;
    }
    .credit-box {
        background-color: #f0f2f6;
        padding: 1.5rem;
        border-radius: 0.5rem;
        margin: 1rem 0;
        border-left: 5px solid #2E86C1;
    }
    .header-box {
        background: linear-gradient(135deg, #2E86C1, #3498DB);
        padding: 2rem;
        border-radius: 0.5rem;
        color: white;
        margin-bottom: 2rem;
        text-align: center;
        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
    }
    .image-container {
        margin: 1rem 0;
        padding: 1rem;
        border-radius: 0.5rem;
        background-color: #f8f9fa;
        border: 1px solid #e9ecef;
    }
    .analysis-container {
        margin-top: 1rem;
        padding: 1.5rem;
        border-radius: 0.5rem;
        background-color: #f8f9fa;
        border: 1px solid #e9ecef;
    }
    .patient-info {
        background-color: #fff;
        padding: 1.5rem;
        border-radius: 0.5rem;
        border: 1px solid #e9ecef;
        margin-bottom: 1rem;
    }
    .upload-section {
        background-color: #f8f9fa;
        padding: 1.5rem;
        border-radius: 0.5rem;
        border: 1px dashed #2E86C1;
        margin: 1rem 0;
    }
    .info-box {
        background-color: #e1f5fe;
        padding: 1rem;
        border-radius: 0.5rem;
        margin: 0.5rem 0;
        border-left: 3px solid #03a9f4;
    }
    .timeline-container {
        margin: 2rem 0;
        padding: 1rem;
        background-color: #fff;
        border-radius: 0.5rem;
        border: 1px solid #e9ecef;
    }
    .timepoint-card {
        background-color: #f8f9fa;
        padding: 1rem;
        margin: 0.5rem 0;
        border-radius: 0.5rem;
        border-left: 3px solid #2E86C1;
    }
    </style>
""", unsafe_allow_html=True)

# System prompts
CORNEA_ANALYSIS_PROMPT = """You are an expert ophthalmologist specializing in corneal diseases. Analyze these Pentacam scans and patient data with focus on:

1. Corneal Parameters Analysis:
   • Thickness mapping and progression
   • Topographic changes
   • Elevation data (anterior and posterior)
   • Keratoconus indices and classification

2. Disease Assessment:
   • ABCD Keratoconus staging
   • Fuchs Endothelial Corneal Dystrophy evaluation
   • Subclinical corneal edema (Sun criteria)
   • Risk assessment

3. Clinical Interpretation:
   • Pattern recognition
   • Disease progression markers
   • Treatment implications

Please provide a detailed clinical assessment."""

PROGRESSION_ANALYSIS_PROMPT = """Analyze the progression of corneal parameters across multiple timepoints, focusing on:

1. Temporal Changes:
   • Progressive changes in corneal thickness
   • Evolution of topographic patterns
   • Changes in elevation maps
   • Progression of keratoconus indices

2. Rate of Progression:
   • Quantify changes between timepoints
   • Identify acceleration or stabilization periods
   • Compare with expected disease progression

3. Risk Assessment:
   • Current status evaluation
   • Future progression risk
   • Treatment recommendations

4. Timeline Analysis:
   • Key changes between each timepoint
   • Overall progression pattern
   • Critical periods of change

Please provide a comprehensive progression analysis with clinical recommendations."""

def extract_patient_data(uploaded_file):
    """Extract and process patient data from uploaded file"""
    patient_data = {}
    
    if uploaded_file.type == "application/pdf":
        pdf_reader = PyPDF2.PdfReader(uploaded_file)
        text = ""
        for page in pdf_reader.pages:
            text += page.extract_text()
        patient_data['raw_text'] = text
    else:
        # Handle other file types if needed
        patient_data['raw_text'] = "File type not supported for detailed extraction"
    
    return patient_data

def analyze_timepoint(images, date, patient_data=None):
    """Analyze a single timepoint"""
    prompt = f"{CORNEA_ANALYSIS_PROMPT}\n\nTimepoint: {date}\n"
    if patient_data:
        prompt += f"\nPatient Information:\n{patient_data}\n"
    
    prompt += "\nPlease analyze these corneal scans:"
    content = [prompt] + images
    response = model.generate_content(content)
    return response.text

def analyze_progression(timepoints_data):
    """Analyze progression across multiple timepoints"""
    prompt = f"{PROGRESSION_ANALYSIS_PROMPT}\n\n"
    prompt += "Timepoints for analysis:\n"
    
    # Add all timepoints to the prompt
    all_images = []
    for date, images in timepoints_data.items():
        prompt += f"\n- {date}:"
        all_images.extend(images)
    
    prompt += "\n\nPlease analyze the progression across these timepoints:"
    content = [prompt] + all_images
    response = model.generate_content(content)
    return response.text

def extract_date_from_filename(filename):
    """Extract date from filename using common patterns"""
    # Common date patterns (add more patterns if needed)
    patterns = [
        r'(\d{4}[-_/]\d{2}[-_/]\d{2})',  # YYYY-MM-DD, YYYY_MM_DD
        r'(\d{2}[-_/]\d{2}[-_/]\d{4})',  # DD-MM-YYYY, DD_MM_YYYY
        r'(\d{8})',  # YYYYMMDD
    ]
    
    for pattern in patterns:
        match = re.search(pattern, filename)
        if match:
            date_str = match.group(1)
            try:
                # Try different date formats
                for fmt in ['%Y-%m-%d', '%Y_%m_%d', '%d-%m-%Y', '%d_%m_%Y', '%Y%m%d']:
                    try:
                        return datetime.strptime(date_str.replace('/', '-'), fmt).strftime('%Y-%m-%d')
                    except ValueError:
                        continue
            except ValueError:
                continue
    return None

def organize_scans_by_date(files):
    """Organize uploaded files by their dates"""
    organized_files = defaultdict(list)
    unorganized_files = []
    
    for file in files:
        date = extract_date_from_filename(file.name)
        if date:
            organized_files[date].append(file)
        else:
            unorganized_files.append(file)
    
    return organized_files, unorganized_files

def main():
    # Header
    st.markdown("""
        <div class="header-box">
            <h1>Cornea AI Pentacam Analyzer</h1>
            <p style="font-size: 1.2em; margin-top: 1rem;">Advanced Corneal Analysis & Diagnostics</p>
        </div>
    """, unsafe_allow_html=True)

    # Credits
    st.markdown("""
        <div class="credit-box">
            <h3>About</h3>
            <p>Developed by Dr. Verónica Gómez Calleja</p>
            <p>Cornea Specialist</p>
            <p>This advanced tool assists in the analysis of Pentacam scans and corneal conditions using state-of-the-art AI technology. 
            It provides comprehensive analysis of corneal parameters and supports clinical decision-making in keratoconus, FECD, and other corneal conditions.</p>
            <p><strong>Note:</strong> This tool is for assistance only and should not replace professional medical judgment.</p>
        </div>
    """, unsafe_allow_html=True)
    
    # Patient Information Section
    st.markdown("### Patient Information")
    st.markdown("""
        <div class="info-box">
            Upload patient information including:
            • Clinical history
            • Previous diagnoses
            • Current symptoms
            • Family history
            • Previous treatments
            • Current medications
            • Other relevant medical conditions
        </div>
    """, unsafe_allow_html=True)
    
    patient_file = st.file_uploader("Upload Patient Information (PDF/Text)", type=['pdf', 'txt'])
    patient_data = None
    if patient_file:
        patient_data = extract_patient_data(patient_file)
        with st.expander("View Extracted Patient Information"):
            st.text(patient_data.get('raw_text', 'No text extracted'))

    # Scan Analysis Section
    st.markdown("### Pentacam Scan Analysis")
    analysis_type = st.radio("Select Analysis Type", ["Single Timepoint", "Progression Analysis"])

    if analysis_type == "Single Timepoint":
        st.markdown('<div class="upload-section">', unsafe_allow_html=True)
        uploaded_files = st.file_uploader("Upload Pentacam Scans", type=['png', 'jpg', 'jpeg'], accept_multiple_files=True)
        
        if uploaded_files:
            images = []
            for file in uploaded_files:
                image = Image.open(file)
                images.append(image)
            
            if images:
                st.markdown("#### Preview Scans")
                cols = st.columns(len(images))
                for idx, (col, img) in enumerate(zip(cols, images)):
                    with col:
                        st.image(img, caption=f"Scan {idx + 1}", use_column_width=True)
                
                if st.button("Analyze Scans"):
                    with st.spinner("Analyzing..."):
                        analysis = analyze_timepoint(
                            images,
                            datetime.now().strftime("%Y-%m-%d"),  # Current date for reference
                            patient_data.get('raw_text') if patient_data else None
                        )
                        st.markdown("### Analysis Results")
                        st.markdown('<div class="analysis-container">', unsafe_allow_html=True)
                        st.markdown(analysis)
                        st.markdown('</div>', unsafe_allow_html=True)
        
        st.markdown('</div>', unsafe_allow_html=True)
    
    else:  # Progression Analysis
        st.markdown('<div class="upload-section">', unsafe_allow_html=True)
        st.info("""Upload all your Pentacam scans at once. The system will automatically organize them by date and analyze progression.
                   For best results, ensure your scan filenames include dates (e.g., 'scan_2023-01-15.jpg' or 'pentacam_20230115.png')""")
        
        uploaded_files = st.file_uploader(
            "Upload All Pentacam Scans",
            type=['png', 'jpg', 'jpeg'],
            accept_multiple_files=True
        )
        
        if uploaded_files:
            organized_files, unorganized_files = organize_scans_by_date(uploaded_files)
            
            if organized_files:
                st.markdown("### Organized Scans by Date")
                st.markdown('<div class="timeline-container">', unsafe_allow_html=True)
                
                timepoints_data = defaultdict(list)
                dates = sorted(organized_files.keys())
                
                for date in dates:
                    st.markdown(f'<div class="timepoint-card">', unsafe_allow_html=True)
                    st.markdown(f"#### Timepoint: {date}")
                    
                    files = organized_files[date]
                    images = []
                    cols = st.columns(len(files))
                    
                    for idx, (file, col) in enumerate(zip(files, cols)):
                        with col:
                            image = Image.open(file)
                            images.append(image)
                            st.image(image, caption=f"Scan {idx + 1}", use_column_width=True)
                    
                    timepoints_data[date].extend(images)
                    st.markdown('</div>', unsafe_allow_html=True)
                
                if unorganized_files:
                    st.warning(f"{len(unorganized_files)} files couldn't be automatically dated. Please ensure filenames include dates.")
                    with st.expander("Manually Assign Dates"):
                        for file in unorganized_files:
                            col1, col2 = st.columns([2, 1])
                            with col1:
                                st.text(file.name)
                            with col2:
                                date = st.date_input(f"Date for {file.name}", key=f"manual_{file.name}")
                                image = Image.open(file)
                                timepoints_data[date.strftime("%Y-%m-%d")].append(image)
                
                if len(timepoints_data) >= 2:
                    if st.button("Analyze Progression"):
                        with st.spinner("Analyzing progression across timepoints..."):
                            progression_analysis = analyze_progression(timepoints_data)
                            st.markdown("### Progression Analysis Results")
                            st.markdown('<div class="analysis-container">', unsafe_allow_html=True)
                            st.markdown(progression_analysis)
                            st.markdown('</div>', unsafe_allow_html=True)
                else:
                    st.warning("Please upload scans from at least 2 different timepoints for progression analysis.")
                
                st.markdown('</div>', unsafe_allow_html=True)
            else:
                st.error("No dated scans found. Please ensure your filenames include dates (e.g., 'scan_2023-01-15.jpg').")
        
        st.markdown('</div>', unsafe_allow_html=True)

if __name__ == "__main__":
    main()