File size: 16,980 Bytes
45a5c11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Sistema de recomendação de filmes usando filtro colaborativo"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Preparando conjunto de dados"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Importações do projeto"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 220,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import pandas as pd\n",
    "from fuzzywuzzy import process\n",
    "from sklearn.metrics.pairwise import cosine_similarity\n",
    "import math"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Importando conjunto de dados\n",
    "ratings: Avaliações dos usuários para cada filme\n",
    "\n",
    "movies: informações dos filmes que foram avaliados"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 221,
   "metadata": {},
   "outputs": [],
   "source": [
    "ratings = pd.read_csv('../data/reduced/ratings_m10.csv')\n",
    "ratings.reindex()\n",
    "movies = pd.read_csv('../data/reduced/movies_m10_rich_pre.csv', index_col='movieId')\n",
    "movies_title = movies[['title']]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Junção dos dois conjuntos de dados\n",
    "união feita pela coluna 'movieId' presente em ambos"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 222,
   "metadata": {},
   "outputs": [],
   "source": [
    "ratings_movies = ratings.merge(movies_title, on='movieId')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Separação do conjunto de dados baseado no timestamp\n",
    "Para cada usuário foram divididas 90% das suas avaliações para o conjunto de treino e o restante para o conjunto de teste"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 223,
   "metadata": {},
   "outputs": [],
   "source": [
    "def train_test_column_split(df, group_column, split_column, y_label, train_size):\n",
    "    df = df.sort_values(by=split_column, ascending=True)   \n",
    "    train = pd.DataFrame(columns=df.columns)\n",
    "    test = pd.DataFrame(columns=df.columns)\n",
    "\n",
    "    for idx in df[group_column].unique():\n",
    "        group = df.loc[df[group_column] == idx]\n",
    "\n",
    "        q_user = group[group[split_column].le(group[split_column].quantile(train_size))]\n",
    "        p_user = group[group[split_column].ge(group[split_column].quantile(train_size))]\n",
    "\n",
    "        train = pd.concat([train, q_user])\n",
    "        test = pd.concat([test, p_user])\n",
    "    train = train.sort_index(ascending=True)\n",
    "    test = test.sort_index(ascending=True)\n",
    "\n",
    "    X_labels = [c for c in df.columns]\n",
    "\n",
    "    X_train = train[X_labels]\n",
    "    X_test = test[X_labels]\n",
    "\n",
    "    return (X_train, X_test)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 224,
   "metadata": {},
   "outputs": [],
   "source": [
    "X_train, X_test = train_test_column_split(ratings_movies, 'userId', 'timestamp', 'rating', .9)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Criando uma Pivot Matrix\n",
    "Matriz: {userId x movieId}, cada célula corresponde à avaliação de cada usuário para cada filme, em que na ausência será preenchido com 0 (zero)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 225,
   "metadata": {},
   "outputs": [],
   "source": [
    "#user_movie_mat = ratings_movies.pivot(index='movieId', columns='userId', values='rating').fillna(0)\n",
    "user_movie_train = X_train.pivot(index='movieId', columns='userId', values='rating').fillna(0)\n",
    "user_movie_test = X_test.pivot(index='movieId', columns='userId', values='rating').fillna(0)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Criando Matriz de similaridade dos usuários baseado nas avaliações"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 226,
   "metadata": {},
   "outputs": [],
   "source": [
    "def find_correlation_between_two_users(ratings_df: pd.DataFrame, user1: str, user2: str):\n",
    "    \"\"\"Find correlation between two users based on their rated movies using Pearson correlation\"\"\"\n",
    "    rated_movies_by_both = ratings_df[[user1, user2]].dropna(axis=0).values\n",
    "    user1_ratings = rated_movies_by_both[:, 0].reshape(1, -1)\n",
    "    user2_ratings = rated_movies_by_both[:, 1].reshape(1, -1)\n",
    "    return cosine_similarity(user1_ratings, user2_ratings)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 227,
   "metadata": {},
   "outputs": [],
   "source": [
    "users_list = list(user_movie_train.columns)\n",
    "movies_list = list(user_movie_train.index)\n",
    "\n",
    "#users_similarity_mat = np.array([[find_correlation_between_two_users(user_movie_train, user1, user2) for user1 in users_list] for user2 in users_list])\n",
    "##users_similarity_mat = users_similarity_mat.reshape(608, 608)\n",
    "#users_similarity_mat = pd.DataFrame(users_similarity_mat, index=users_list, columns=users_list)\n",
    "users_similarity_mat = pd.read_pickle('../data/preprocessed/users_similarity_mat_cosim.pkl')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Métodos para prever as notas que o usuário dará para cada filme"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 228,
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_rated_user_for_a_movie(ratings_df: pd.DataFrame, movie: str):\n",
    "    return ratings_df.loc[movie, :].dropna().index.values\n",
    "\n",
    "\n",
    "def get_top_neighbors(\n",
    "    similarity_df: pd.DataFrame, user: str, rated_users: str, n_neighbors: int\n",
    "):\n",
    "    return similarity_df[user][rated_users].nlargest(n_neighbors).to_dict()\n",
    "\n",
    "\n",
    "def subtract_bias(rating: float, mean_rating: float):\n",
    "    return rating - mean_rating\n",
    "\n",
    "\n",
    "def get_neighbor_rating_without_bias_per_movie(\n",
    "    ratings_df: pd.DataFrame, user: str, movie: str\n",
    "):\n",
    "    \"\"\"Substract the rating of a user from the mean rating of that user to eliminate bias\"\"\"\n",
    "    mean_rating = ratings_df[user].mean()\n",
    "    rating = ratings_df.loc[movie, user]\n",
    "    return subtract_bias(rating, mean_rating)\n",
    "\n",
    "\n",
    "def get_ratings_of_neighbors(ratings_df: pd.DataFrame, neighbors: list, movie: str):\n",
    "    \"\"\"Get the ratings of all neighbors after adjusting for biases\"\"\"\n",
    "    return [\n",
    "        get_neighbor_rating_without_bias_per_movie(ratings_df, neighbor, movie)\n",
    "        for neighbor in neighbors\n",
    "    ]\n",
    "\n",
    "def get_weighted_average_rating_of_neighbors(ratings: list, neighbor_distance: list):\n",
    "    weighted_sum = np.array(ratings).dot(np.array(neighbor_distance))\n",
    "    abs_neigbor_distance = np.abs(neighbor_distance)\n",
    "    return weighted_sum / np.sum(abs_neigbor_distance)\n",
    "\n",
    "\n",
    "def ger_user_rating(ratings_df: pd.DataFrame, user: str, avg_neighbor_rating: float):\n",
    "    user_avg_rating = ratings_df[user].mean()\n",
    "    return round(user_avg_rating + avg_neighbor_rating, 2)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 229,
   "metadata": {},
   "outputs": [],
   "source": [
    "def predict_rating(\n",
    "    df: pd.DataFrame,\n",
    "    similarity_df: pd.DataFrame,\n",
    "    user: str,\n",
    "    movie: str,\n",
    "    n_neighbors: int = 2,\n",
    "):\n",
    "    \"\"\"Predict the rating of a user for a movie based on the ratings of neighbors\"\"\"\n",
    "    ratings_df = df.copy()\n",
    "\n",
    "    rated_users = get_rated_user_for_a_movie(ratings_df, movie)\n",
    "\n",
    "    top_neighbors_distance = get_top_neighbors(\n",
    "        similarity_df, user, rated_users, n_neighbors\n",
    "    )\n",
    "    neighbors, distance = top_neighbors_distance.keys(), top_neighbors_distance.values()\n",
    "\n",
    "    #print(f\"Top {n_neighbors} neighbors of user {user}, {movie}: {list(neighbors)}, distance: {list(distance)}\")\n",
    "\n",
    "    ratings = get_ratings_of_neighbors(ratings_df, neighbors, movie)\n",
    "    avg_neighbor_rating = get_weighted_average_rating_of_neighbors(\n",
    "        ratings, list(distance)\n",
    "    )\n",
    "\n",
    "    return ger_user_rating(ratings_df, user, avg_neighbor_rating)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 230,
   "metadata": {},
   "outputs": [],
   "source": [
    "def adjust_rating(nota):\n",
    "    if nota < 0:\n",
    "        return 0\n",
    "    elif nota > 5:\n",
    "        return 5\n",
    "    else:\n",
    "        # Arredonda para o valor mais próximo em incrementos de 0.5\n",
    "        return round(nota * 2) / 2\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 231,
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_n_recommendations(user: int, n: int, user_movie_mat: pd.DataFrame, movies: pd.DataFrame, n_neighbors: int):\n",
    "    df = user_movie_mat.copy()\n",
    "    recommendations = pd.DataFrame(columns=['movieId', 'title', 'pred_rating'])\n",
    "\n",
    "    for movie, _ in df[user].items():\n",
    "        if df.loc[movie, user] == 0:\n",
    "            df.loc[movie, user] = predict_rating(user_movie_mat, users_similarity_mat, user, movie, n_neighbors)\n",
    "            new_row = {'movieId': movie, 'title': movies.loc[movie]['title'], 'pred_rating': adjust_rating(df.loc[movie, user])}\n",
    "            recommendations.loc[len(recommendations)] = new_row\n",
    "\n",
    "    recommendations = recommendations.sort_values(by='pred_rating', ascending=False)\n",
    "    return recommendations.head(n) if n > 0  else recommendations"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 232,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "3.03"
      ]
     },
     "execution_count": 232,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "movie_name = 'White Squall'\n",
    "user1 = 1\n",
    "movie = process.extractOne(movie_name, movies['title'])[2]\n",
    "rating = predict_rating(user_movie_train, users_similarity_mat, user1, movie, 30)\n",
    "rating"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 236,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>movieId</th>\n",
       "      <th>title</th>\n",
       "      <th>pred_rating</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>248</th>\n",
       "      <td>589</td>\n",
       "      <td>Fallen</td>\n",
       "      <td>3.5</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>31</th>\n",
       "      <td>47</td>\n",
       "      <td>White Squall</td>\n",
       "      <td>3.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>542</th>\n",
       "      <td>1527</td>\n",
       "      <td>Closer</td>\n",
       "      <td>3.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>310</th>\n",
       "      <td>858</td>\n",
       "      <td>South Park: Bigger, Longer and Uncut</td>\n",
       "      <td>3.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>364</th>\n",
       "      <td>1036</td>\n",
       "      <td>Great Muppet Caper, The</td>\n",
       "      <td>3.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>385</th>\n",
       "      <td>1100</td>\n",
       "      <td>Starman</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>384</th>\n",
       "      <td>1096</td>\n",
       "      <td>Flatliners</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>383</th>\n",
       "      <td>1095</td>\n",
       "      <td>Blood Simple</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>185</th>\n",
       "      <td>419</td>\n",
       "      <td>Henry V</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>62</th>\n",
       "      <td>147</td>\n",
       "      <td>Shallow Grave</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>666 rows × 3 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "     movieId                                  title  pred_rating\n",
       "248      589                                Fallen           3.5\n",
       "31        47                          White Squall           3.0\n",
       "542     1527                                Closer           3.0\n",
       "310      858  South Park: Bigger, Longer and Uncut           3.0\n",
       "364     1036               Great Muppet Caper, The           3.0\n",
       "..       ...                                    ...          ...\n",
       "385     1100                               Starman           0.0\n",
       "384     1096                            Flatliners           0.0\n",
       "383     1095                          Blood Simple           0.0\n",
       "185      419                               Henry V           0.0\n",
       "62       147                         Shallow Grave           0.0\n",
       "\n",
       "[666 rows x 3 columns]"
      ]
     },
     "execution_count": 236,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "user_id = 1\n",
    "n_top_neighbors = 30\n",
    "n_recommendations = -1\n",
    "\n",
    "n_recommendations = get_n_recommendations(user_id, n_recommendations, user_movie_train, movies, n_top_neighbors)\n",
    "n_recommendations"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Avaliação dos resultados"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 234,
   "metadata": {},
   "outputs": [],
   "source": [
    "def eval_ratings():\n",
    "    test = user_movie_test.copy()\n",
    "\n",
    "    real = []\n",
    "    preds = []\n",
    "\n",
    "    for user in test.columns:\n",
    "        for movie, _ in test[user].items():\n",
    "            if test.loc[movie, user] != 0 and len(n_recommendations[n_recommendations['movieId'] == movie]['pred_rating'].values) > 0:\n",
    "                title = movies.loc[movie]['title']\n",
    "                real_rating = test.loc[movie, user]\n",
    "                pred_rating = n_recommendations[n_recommendations['movieId'] == movie]['pred_rating'].values[0]\n",
    "                \n",
    "                real.append(real_rating)\n",
    "                preds.append(pred_rating)\n",
    "                \n",
    "                #print(f'{user:10} - {title:50} - true rating: {real_rating}, pred rating: {pred_rating}, DIFF:{abs(real_rating - pred_rating)}')\n",
    "\n",
    "    MSE = np.square(np.subtract(real, preds)).mean() \n",
    "    \n",
    "    RMSE = math.sqrt(MSE)\n",
    "    print(\"Root Mean Square Error:\\n\")\n",
    "    print(RMSE)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 235,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Root Mean Square Error:\n",
      "\n",
      "3.0086445530929264\n"
     ]
    }
   ],
   "source": [
    "eval_ratings()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}