Spaces:
Runtime error
Runtime error
File size: 7,237 Bytes
c96e9d6 04c8a7b f248e14 30b8f71 a20b728 f248e14 04c8a7b 2627f58 04c8a7b 2627f58 04c8a7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
# Will be based on
# ConstructiveLoss function.
#
# https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/quora_duplicate_questions/training_OnlineContrastiveLoss.py
from torch.utils.data import DataLoader
from sentence_transformers import losses, util
from sentence_transformers import LoggingHandler, SentenceTransformer, evaluation
from sentence_transformers.readers import InputExample
import logging
from datetime import datetime
import csv
import os
from zipfile import ZipFile
import random
#### Just some code to print debug information to stdout
logging.basicConfig(format='%(asctime)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=logging.INFO,
handlers=[LoggingHandler()])
logger = logging.getLogger(__name__)
#### /print debug information to stdout
#As base model, we use DistilBERT-base that was pre-trained on NLI and STSb data
model_name ='sentence-transformers/paraphrase-albert-base-v2'
model_name = 'sentence-transformers/all-mpnet-base-v1'
model = SentenceTransformer(model_name)
num_epochs = 12
# Smaller is generally better more accurate results.
train_batch_size = 10
#As distance metric, we use cosine distance (cosine_distance = 1-cosine_similarity)
distance_metric = losses.SiameseDistanceMetric.COSINE_DISTANCE
#Negative pairs should have a distance of at least 0.5
margin = 0.5
dataset_path = "data_set_training.csv"
model_save_path = 'output/training_OnlineConstrativeLoss-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
os.makedirs(model_save_path, exist_ok=True)
######### Read train data ##########
# Read train data
train_samples = []
with open(dataset_path, encoding='utf8') as fIn:
reader = csv.DictReader(fIn, delimiter='|', quoting=csv.QUOTE_NONE)
for row in reader:
sample = InputExample(texts=[row['ADDRESS1'], row['ADDRESS2']], label=int(row['ARE_SAME']))
train_samples.append(sample)
train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size)
train_loss = losses.OnlineContrastiveLoss(model=model, distance_metric=distance_metric, margin=margin)
################### Development Evaluators ##################
# We add 3 evaluators, that evaluate the model on Duplicate Questions pair classification,
# Duplicate Questions Mining, and Duplicate Questions Information Retrieval
#evaluators = []
###### Classification ######
# Given (quesiton1, question2), is this a duplicate or not?
# The evaluator will compute the embeddings for both questions and then compute
# a cosine similarity. If the similarity is above a threshold, we have a duplicate.
dev_sentences1 = []
dev_sentences2 = []
dev_labels = []
with open( "dev_set_training.csv", encoding='utf8') as fIn:
reader = csv.DictReader(fIn, delimiter='|', quoting=csv.QUOTE_NONE)
for row in reader:
dev_sentences1.append(row['ADDRESS1'])
dev_sentences2.append(row['ADDRESS2'])
dev_labels.append(int(row['ARE_SAME']))
binary_acc_evaluator = evaluation.BinaryClassificationEvaluator(dev_sentences1, dev_sentences2, dev_labels)
#evaluators.append(binary_acc_evaluator)
###### Duplicate Questions Mining ######
# Given a large corpus of questions, identify all duplicates in that corpus.
# For faster processing, we limit the development corpus to only 10,000 sentences.
#max_dev_samples = 10000
#dev_sentences = {}
#dev_duplicates = []
#with open("dev_corpus.csv", encoding='utf8') as fIn:
# reader = csv.DictReader(fIn, delimiter='|', quoting=csv.QUOTE_NONE)
# for row in reader:
# dev_sentences[row['qid']] = row['question']
#
# if len(dev_sentences) >= max_dev_samples:
# break
#
#with open(os.path.join(dataset_path, "duplicate-mining/dev_duplicates.tsv"), encoding='utf8') as fIn:
# reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE)
# for row in reader:
# if row['qid1'] in dev_sentences and row['qid2'] in dev_sentences:
# dev_duplicates.append([row['qid1'], row['qid2']])
#
#
## The ParaphraseMiningEvaluator computes the cosine similarity between all sentences and
## extracts a list with the pairs that have the highest similarity. Given the duplicate
## information in dev_duplicates, it then computes and F1 score how well our duplicate mining worked
#paraphrase_mining_evaluator = evaluation.ParaphraseMiningEvaluator(dev_sentences, dev_duplicates, name='dev')
#evaluators.append(paraphrase_mining_evaluator)
#
#
####### Duplicate Questions Information Retrieval ######
## Given a question and a large corpus of thousands questions, find the most relevant (i.e. duplicate) question
## in that corpus.
#
## For faster processing, we limit the development corpus to only 10,000 sentences.
#max_corpus_size = 100000
#
#ir_queries = {} #Our queries (qid => question)
#ir_needed_qids = set() #QIDs we need in the corpus
#ir_corpus = {} #Our corpus (qid => question)
#ir_relevant_docs = {} #Mapping of relevant documents for a given query (qid => set([relevant_question_ids])
#
#with open(os.path.join(dataset_path, 'information-retrieval/dev-queries.tsv'), encoding='utf8') as fIn:
# next(fIn) #Skip header
# for line in fIn:
# qid, query, duplicate_ids = line.strip().split('\t')
# duplicate_ids = duplicate_ids.split(',')
# ir_queries[qid] = query
# ir_relevant_docs[qid] = set(duplicate_ids)
#
# for qid in duplicate_ids:
# ir_needed_qids.add(qid)
#
## First get all needed relevant documents (i.e., we must ensure, that the relevant questions are actually in the corpus
#distraction_questions = {}
#with open(os.path.join(dataset_path, 'information-retrieval/corpus.tsv'), encoding='utf8') as fIn:
# next(fIn) #Skip header
# for line in fIn:
# qid, question = line.strip().split('\t')
#
# if qid in ir_needed_qids:
# ir_corpus[qid] = question
# else:
# distraction_questions[qid] = question
#
## Now, also add some irrelevant questions to fill our corpus
#other_qid_list = list(distraction_questions.keys())
#random.shuffle(other_qid_list)
#
#for qid in other_qid_list[0:max(0, max_corpus_size-len(ir_corpus))]:
# ir_corpus[qid] = distraction_questions[qid]
#
##Given queries, a corpus and a mapping with relevant documents, the InformationRetrievalEvaluator computes different IR
## metrices. For our use case MRR@k and Accuracy@k are relevant.
#ir_evaluator = evaluation.InformationRetrievalEvaluator(ir_queries, ir_corpus, ir_relevant_docs)
#
#evaluators.append(ir_evaluator)
#
## Create a SequentialEvaluator. This SequentialEvaluator runs all three evaluators in a sequential order.
## We optimize the model with respect to the score from the last evaluator (scores[-1])
#seq_evaluator = evaluation.SequentialEvaluator(evaluators, main_score_function=lambda scores: scores[-1])
#
#
#logger.info("Evaluate model without training")
#seq_evaluator(model, epoch=0, steps=0, output_path=model_save_path)
# Train the model
model.fit(train_objectives=[(train_dataloader, train_loss)],
evaluator=binary_acc_evaluator,
epochs=num_epochs,
warmup_steps=5,
output_path=model_save_path
) |