File size: 7,106 Bytes
c96e9d6
 
 
04c8a7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71667b3
04c8a7b
6005876
04c8a7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2627f58
04c8a7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2627f58
 
 
04c8a7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Will be based on
# ConstructiveLoss function.
#
# https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/quora_duplicate_questions/training_OnlineContrastiveLoss.py

from torch.utils.data import DataLoader
from sentence_transformers import losses, util
from sentence_transformers import LoggingHandler, SentenceTransformer, evaluation
from sentence_transformers.readers import InputExample
import logging
from datetime import datetime
import csv
import os
from zipfile import ZipFile
import random

#### Just some code to print debug information to stdout
logging.basicConfig(format='%(asctime)s - %(message)s',
                    datefmt='%Y-%m-%d %H:%M:%S',
                    level=logging.INFO,
                    handlers=[LoggingHandler()])
logger = logging.getLogger(__name__)
#### /print debug information to stdout


#As base model, we use DistilBERT-base that was pre-trained on NLI and STSb data
model = SentenceTransformer('sentence-transformers/paraphrase-albert-base-v2')
num_epochs = 10
train_batch_size = 10

#As distance metric, we use cosine distance (cosine_distance = 1-cosine_similarity)
distance_metric = losses.SiameseDistanceMetric.COSINE_DISTANCE

#Negative pairs should have a distance of at least 0.5
margin = 0.5

dataset_path = "data_set_training.csv"
model_save_path = 'output/training_OnlineConstrativeLoss-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S")

os.makedirs(model_save_path, exist_ok=True)

######### Read train data  ##########
# Read train data
train_samples = []
with open(dataset_path, encoding='utf8') as fIn:
    reader = csv.DictReader(fIn, delimiter='|', quoting=csv.QUOTE_NONE)
    for row in reader:
        sample = InputExample(texts=[row['ADDRESS1'], row['ADDRESS2']], label=int(row['ARE_SAME']))
        train_samples.append(sample)


train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size)
train_loss = losses.OnlineContrastiveLoss(model=model, distance_metric=distance_metric, margin=margin)


################### Development  Evaluators ##################
# We add 3 evaluators, that evaluate the model on Duplicate Questions pair classification,
# Duplicate Questions Mining, and Duplicate Questions Information Retrieval
#evaluators = []

###### Classification ######
# Given (quesiton1, question2), is this a duplicate or not?
# The evaluator will compute the embeddings for both questions and then compute
# a cosine similarity. If the similarity is above a threshold, we have a duplicate.
dev_sentences1 = []
dev_sentences2 = []
dev_labels = []
with open( "dev_set_training.csv", encoding='utf8') as fIn:
    reader = csv.DictReader(fIn, delimiter='|', quoting=csv.QUOTE_NONE)
    for row in reader:
        dev_sentences1.append(row['ADDRESS1'])
        dev_sentences2.append(row['ADDRESS2'])
        dev_labels.append(int(row['ARE_SAME']))


binary_acc_evaluator = evaluation.BinaryClassificationEvaluator(dev_sentences1, dev_sentences2, dev_labels)
#evaluators.append(binary_acc_evaluator)



###### Duplicate Questions Mining ######
# Given a large corpus of questions, identify all duplicates in that corpus.

# For faster processing, we limit the development corpus to only 10,000 sentences.
#max_dev_samples = 10000
#dev_sentences = {}
#dev_duplicates = []
#with open("dev_corpus.csv", encoding='utf8') as fIn:
#    reader = csv.DictReader(fIn, delimiter='|', quoting=csv.QUOTE_NONE)
#    for row in reader:
#        dev_sentences[row['qid']] = row['question']
#
#        if len(dev_sentences) >= max_dev_samples:
#            break
#
#with open(os.path.join(dataset_path, "duplicate-mining/dev_duplicates.tsv"), encoding='utf8') as fIn:
#    reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE)
#    for row in reader:
#        if row['qid1'] in dev_sentences and row['qid2'] in dev_sentences:
#            dev_duplicates.append([row['qid1'], row['qid2']])
#
#
## The ParaphraseMiningEvaluator computes the cosine similarity between all sentences and
## extracts a list with the pairs that have the highest similarity. Given the duplicate
## information in dev_duplicates, it then computes and F1 score how well our duplicate mining worked
#paraphrase_mining_evaluator = evaluation.ParaphraseMiningEvaluator(dev_sentences, dev_duplicates, name='dev')
#evaluators.append(paraphrase_mining_evaluator)
#
#
####### Duplicate Questions Information Retrieval ######
## Given a question and a large corpus of thousands questions, find the most relevant (i.e. duplicate) question
## in that corpus.
#
## For faster processing, we limit the development corpus to only 10,000 sentences.
#max_corpus_size = 100000
#
#ir_queries = {}             #Our queries (qid => question)
#ir_needed_qids = set()      #QIDs we need in the corpus
#ir_corpus = {}              #Our corpus (qid => question)
#ir_relevant_docs = {}       #Mapping of relevant documents for a given query (qid => set([relevant_question_ids])
#
#with open(os.path.join(dataset_path, 'information-retrieval/dev-queries.tsv'), encoding='utf8') as fIn:
#    next(fIn) #Skip header
#    for line in fIn:
#        qid, query, duplicate_ids = line.strip().split('\t')
#        duplicate_ids = duplicate_ids.split(',')
#        ir_queries[qid] = query
#        ir_relevant_docs[qid] = set(duplicate_ids)
#
#        for qid in duplicate_ids:
#            ir_needed_qids.add(qid)
#
## First get all needed relevant documents (i.e., we must ensure, that the relevant questions are actually in the corpus
#distraction_questions = {}
#with open(os.path.join(dataset_path, 'information-retrieval/corpus.tsv'), encoding='utf8') as fIn:
#    next(fIn) #Skip header
#    for line in fIn:
#        qid, question = line.strip().split('\t')
#
#        if qid in ir_needed_qids:
#            ir_corpus[qid] = question
#        else:
#            distraction_questions[qid] = question
#
## Now, also add some irrelevant questions to fill our corpus
#other_qid_list = list(distraction_questions.keys())
#random.shuffle(other_qid_list)
#
#for qid in other_qid_list[0:max(0, max_corpus_size-len(ir_corpus))]:
#    ir_corpus[qid] = distraction_questions[qid]
#
##Given queries, a corpus and a mapping with relevant documents, the InformationRetrievalEvaluator computes different IR
## metrices. For our use case MRR@k and Accuracy@k are relevant.
#ir_evaluator = evaluation.InformationRetrievalEvaluator(ir_queries, ir_corpus, ir_relevant_docs)
#
#evaluators.append(ir_evaluator)
#
## Create a SequentialEvaluator. This SequentialEvaluator runs all three evaluators in a sequential order.
## We optimize the model with respect to the score from the last evaluator (scores[-1])
#seq_evaluator = evaluation.SequentialEvaluator(evaluators, main_score_function=lambda scores: scores[-1])
#
#
#logger.info("Evaluate model without training")
#seq_evaluator(model, epoch=0, steps=0, output_path=model_save_path)


# Train the model
model.fit(train_objectives=[(train_dataloader, train_loss)],
          evaluator=binary_acc_evaluator,
          epochs=num_epochs,
          warmup_steps=5,
          output_path=model_save_path
          )