Spaces:
Configuration error
Configuration error
File size: 6,888 Bytes
313814b 35eafc3 313814b 5741d7c 323aa51 5741d7c 313814b 3e15f14 79f1f8d 3e15f14 313814b ff17e75 20b7748 c8f37a4 3a14175 c8f37a4 aada575 ff17e75 063ef89 ff17e75 35eafc3 3a0bd05 313814b dc4f25f aada575 4dc84c7 d31974d aada575 79f1f8d 313814b dcbab06 9f88e57 fa8a19e e0e6882 fa8a19e 4e64465 aada575 d075459 aada575 3a14175 20b7748 3a14175 35eafc3 c8f37a4 313814b d075459 313814b aada575 d075459 aada575 d075459 9f56267 dc4f25f d075459 9f56267 7f77e4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import enum
from pydantic import BaseModel, Field
from pydantic_settings import BaseSettings, SettingsConfigDict
SAMPLES_PER_SECOND = 16000
BYTES_PER_SAMPLE = 2
BYTES_PER_SECOND = SAMPLES_PER_SECOND * BYTES_PER_SAMPLE
# 2 BYTES = 16 BITS = 1 SAMPLE
# 1 SECOND OF AUDIO = 32000 BYTES = 16000 SAMPLES
# https://platform.openai.com/docs/api-reference/audio/createTranscription#audio-createtranscription-response_format
class ResponseFormat(enum.StrEnum):
TEXT = "text"
JSON = "json"
VERBOSE_JSON = "verbose_json"
SRT = "srt"
VTT = "vtt"
class Device(enum.StrEnum):
CPU = "cpu"
CUDA = "cuda"
AUTO = "auto"
# https://github.com/OpenNMT/CTranslate2/blob/master/docs/quantization.md
class Quantization(enum.StrEnum):
INT8 = "int8"
INT8_FLOAT16 = "int8_float16"
INT8_BFLOAT16 = "int8_bfloat16"
INT8_FLOAT32 = "int8_float32"
INT16 = "int16"
FLOAT16 = "float16"
BFLOAT16 = "bfloat16"
FLOAT32 = "float32"
DEFAULT = "default"
class Language(enum.StrEnum):
AF = "af"
AM = "am"
AR = "ar"
AS = "as"
AZ = "az"
BA = "ba"
BE = "be"
BG = "bg"
BN = "bn"
BO = "bo"
BR = "br"
BS = "bs"
CA = "ca"
CS = "cs"
CY = "cy"
DA = "da"
DE = "de"
EL = "el"
EN = "en"
ES = "es"
ET = "et"
EU = "eu"
FA = "fa"
FI = "fi"
FO = "fo"
FR = "fr"
GL = "gl"
GU = "gu"
HA = "ha"
HAW = "haw"
HE = "he"
HI = "hi"
HR = "hr"
HT = "ht"
HU = "hu"
HY = "hy"
ID = "id"
IS = "is"
IT = "it"
JA = "ja"
JW = "jw"
KA = "ka"
KK = "kk"
KM = "km"
KN = "kn"
KO = "ko"
LA = "la"
LB = "lb"
LN = "ln"
LO = "lo"
LT = "lt"
LV = "lv"
MG = "mg"
MI = "mi"
MK = "mk"
ML = "ml"
MN = "mn"
MR = "mr"
MS = "ms"
MT = "mt"
MY = "my"
NE = "ne"
NL = "nl"
NN = "nn"
NO = "no"
OC = "oc"
PA = "pa"
PL = "pl"
PS = "ps"
PT = "pt"
RO = "ro"
RU = "ru"
SA = "sa"
SD = "sd"
SI = "si"
SK = "sk"
SL = "sl"
SN = "sn"
SO = "so"
SQ = "sq"
SR = "sr"
SU = "su"
SV = "sv"
SW = "sw"
TA = "ta"
TE = "te"
TG = "tg"
TH = "th"
TK = "tk"
TL = "tl"
TR = "tr"
TT = "tt"
UK = "uk"
UR = "ur"
UZ = "uz"
VI = "vi"
YI = "yi"
YO = "yo"
YUE = "yue"
ZH = "zh"
class Task(enum.StrEnum):
TRANSCRIBE = "transcribe"
TRANSLATE = "translate"
class WhisperConfig(BaseModel):
"""See https://github.com/SYSTRAN/faster-whisper/blob/master/faster_whisper/transcribe.py#L599."""
model: str = Field(default="Systran/faster-whisper-small")
"""
Default Huggingface model to use for transcription. Note, the model must support being ran using CTranslate2.
This model will be used if no model is specified in the request.
Models created by authors of `faster-whisper` can be found at https://huggingface.co/Systran
You can find other supported models at https://huggingface.co/models?p=2&sort=trending&search=ctranslate2 and https://huggingface.co/models?sort=trending&search=ct2
"""
inference_device: Device = Field(default=Device.AUTO)
device_index: int | list[int] = 0
compute_type: Quantization = Field(default=Quantization.DEFAULT)
cpu_threads: int = 0
num_workers: int = 1
ttl: int = Field(default=300, ge=-1)
"""
Time in seconds until the model is unloaded if it is not being used.
-1: Never unload the model.
0: Unload the model immediately after usage.
"""
use_batched_mode: bool = False
"""
Whether to use batch mode(introduced in 1.1.0 `faster-whisper` release) for inference. This will likely become the default in the future and the configuration option will be removed.
""" # noqa: E501
class Config(BaseSettings):
"""Configuration for the application. Values can be set via environment variables.
Pydantic will automatically handle mapping uppercased environment variables to the corresponding fields.
To populate nested, the environment should be prefixed with the nested field name and an underscore. For example,
the environment variable `LOG_LEVEL` will be mapped to `log_level`, `WHISPER__MODEL`(note the double underscore) to `whisper.model`, to set quantization to int8, use `WHISPER__COMPUTE_TYPE=int8`, etc.
""" # noqa: E501
model_config = SettingsConfigDict(env_nested_delimiter="__")
api_key: str | None = None
log_level: str = "debug"
host: str = Field(alias="UVICORN_HOST", default="0.0.0.0")
port: int = Field(alias="UVICORN_PORT", default=8000)
allow_origins: list[str] | None = None
"""
https://docs.pydantic.dev/latest/concepts/pydantic_settings/#parsing-environment-variable-values
Usage:
`export ALLOW_ORIGINS='["http://localhost:3000", "http://localhost:3001"]'`
`export ALLOW_ORIGINS='["*"]'`
"""
enable_ui: bool = True
"""
Whether to enable the Gradio UI. You may want to disable this if you want to minimize the dependencies.
"""
default_language: Language | None = None
"""
Default language to use for transcription. If not set, the language will be detected automatically.
It is recommended to set this as it will improve the performance.
"""
default_response_format: ResponseFormat = ResponseFormat.JSON
whisper: WhisperConfig = WhisperConfig()
preload_models: list[str] = Field(
default_factory=list,
examples=[
["Systran/faster-whisper-small"],
["Systran/faster-whisper-medium.en", "Systran/faster-whisper-small.en"],
],
)
"""
List of models to preload on startup. By default, the model is first loaded on first request.
"""
max_no_data_seconds: float = 1.0
"""
Max duration to wait for the next audio chunk before transcription is finilized and connection is closed.
"""
min_duration: float = 1.0
"""
Minimum duration of an audio chunk that will be transcribed.
"""
word_timestamp_error_margin: float = 0.2
max_inactivity_seconds: float = 2.5
"""
Max allowed audio duration without any speech being detected before transcription is finilized and connection is closed.
""" # noqa: E501
inactivity_window_seconds: float = 5.0
"""
Controls how many latest seconds of audio are being passed through VAD.
Should be greater than `max_inactivity_seconds`
"""
chat_completion_base_url: str = "https://api.openai.com/v1"
chat_completion_api_key: str | None = None
speech_base_url: str | None = None
speech_api_key: str | None = None
speech_model: str = "piper"
speech_extra_body: dict = {"sample_rate": 24000}
transcription_base_url: str | None = None
transcription_api_key: str | None = None
|