File size: 7,513 Bytes
8773ff3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import streamlit as st
from streamlit.errors import EntryNotFoundError

from hub import pull_seed_data_from_repo, push_pipeline_to_hub
from defaults import (
    DEFAULT_SYSTEM_PROMPT,
    PIPELINE_PATH,
    PROJECT_NAME,
    ARGILLA_SPACE_REPO_ID,
    DATASET_REPO_ID,
    ARGILLA_SPACE_NAME,
    ARGILLA_URL,
    PROJECT_SPACE_REPO_ID,
    HUB_USERNAME,
)
from utils import project_sidebar

from pipeline import serialize_pipeline, run_pipeline, create_pipelines_run_command

st.set_page_config(
    page_title="Domain Data Grower",
    page_icon="πŸ§‘β€πŸŒΎ",
)

project_sidebar()

################################################################################
# HEADER
################################################################################

st.header("πŸ§‘β€πŸŒΎ Domain Data Grower")
st.divider()
st.subheader("Step 3. Run the pipeline to generate synthetic data")
st.write(
    "Define the project details, including the project name, domain, and API credentials"
)


###############################################################
# CONFIGURATION
###############################################################

st.divider()

st.markdown("### Pipeline Configuration")

st.write("πŸ€— Hub details to pull the seed data")
hub_username = st.text_input("Hub Username", HUB_USERNAME)
project_name = st.text_input("Project Name", PROJECT_NAME)
repo_id = f"{hub_username}/{project_name}"
hub_token = st.text_input("Hub Token", type="password")

st.write("πŸ€– Inference configuration")

st.write(
    "Add the url of the Huggingface inference API or endpoint that your pipeline should use. You can find compatible models here:"
)
st.link_button(
    "πŸ€— Inference compaptible models on the hub",
    "https://huggingface.co/models?pipeline_tag=text-generation&other=endpoints_compatible&sort=trending",
)

base_url = st.text_input("Base URL")

st.write("πŸ”¬ Argilla API details to push the generated dataset")
argilla_url = st.text_input("Argilla API URL", ARGILLA_URL)
argilla_api_key = st.text_input("Argilla API Key", "owner.apikey")
argilla_dataset_name = st.text_input("Argilla Dataset Name", project_name)
st.divider()

###############################################################
# LOCAL
###############################################################

st.markdown("### Run the pipeline")

st.write(
    "Once you've defined the pipeline configuration, you can run the pipeline locally or on this space."
)

st.write(
    """We recommend running the pipeline locally if you're planning on generating a large dataset. \
        But running the pipeline on this space is a handy way to get started quickly. Your synthetic
        samples will be pushed to Argilla and available for review.
        """
)
st.write(
    """If you're planning on running the pipeline on the space, be aware that it \
        will take some time to complete and you will need to maintain a \
        connection to the space."""
)


if st.button("πŸ’» Run pipeline locally", key="run_pipeline_local"):
    if all(
        [
            argilla_api_key,
            argilla_url,
            base_url,
            hub_username,
            project_name,
            hub_token,
            argilla_dataset_name,
        ]
    ):
        with st.spinner("Pulling seed data from the Hub..."):
            seed_data = pull_seed_data_from_repo(
                repo_id=f"{hub_username}/{project_name}",
                hub_token=hub_token,
            )

            domain = seed_data["domain"]
            perspectives = seed_data["perspectives"]
            topics = seed_data["topics"]
            examples = seed_data["examples"]
            domain_expert_prompt = seed_data["domain_expert_prompt"]

        with st.spinner("Serializing the pipeline configuration..."):
            serialize_pipeline(
                argilla_api_key=argilla_api_key,
                argilla_dataset_name=argilla_dataset_name,
                argilla_api_url=argilla_url,
                topics=topics,
                perspectives=perspectives,
                pipeline_config_path=PIPELINE_PATH,
                domain_expert_prompt=domain_expert_prompt or DEFAULT_SYSTEM_PROMPT,
                hub_token=hub_token,
                endpoint_base_url=base_url,
                examples=examples,
            )
            push_pipeline_to_hub(
                pipeline_path=PIPELINE_PATH,
                hub_token=hub_token,
                hub_username=hub_username,
                project_name=project_name,
            )

        st.success(f"Pipeline configuration saved to {hub_username}/{project_name}")

        st.info(
            "To run the pipeline locally, you need to have the `distilabel` library installed. You can install it using the following command:"
        )
        st.text(
            "Execute the following command to generate a synthetic dataset from the seed data:"
        )
        command_to_run = create_pipelines_run_command(
            hub_token=hub_token,
            pipeline_config_path=PIPELINE_PATH,
            argilla_dataset_name=argilla_dataset_name,
        )
        st.code(
            f"""
            pip install git+https://github.com/argilla-io/distilabel.git
            git clone https://huggingface.co/{hub_username}/{project_name}
            cd {project_name}
            {' '.join(command_to_run[2:])}
        """,
            language="bash",
        )
    else:
        st.error("Please fill all the required fields.")

###############################################################
# SPACE
###############################################################

if st.button("πŸ”₯ Run pipeline right here, right now!"):
    if all(
        [
            argilla_api_key,
            argilla_url,
            base_url,
            hub_username,
            project_name,
            hub_token,
            argilla_dataset_name,
        ]
    ):
        with st.spinner("Pulling seed data from the Hub..."):
            try:
                seed_data = pull_seed_data_from_repo(
                    repo_id=f"{hub_username}/{project_name}",
                    hub_token=hub_token,
                )
            except EntryNotFoundError:
                st.error(
                    "Seed data not found. Please make sure you pushed the data seed in Step 2."
                )

            domain = seed_data["domain"]
            perspectives = seed_data["perspectives"]
            topics = seed_data["topics"]
            examples = seed_data["examples"]
            domain_expert_prompt = seed_data["domain_expert_prompt"]

        with st.spinner("Serializing the pipeline configuration..."):
            serialize_pipeline(
                argilla_api_key=argilla_api_key,
                argilla_dataset_name=argilla_dataset_name,
                argilla_api_url=argilla_url,
                topics=topics,
                perspectives=perspectives,
                pipeline_config_path=PIPELINE_PATH,
                domain_expert_prompt=domain_expert_prompt or DEFAULT_SYSTEM_PROMPT,
                hub_token=hub_token,
                endpoint_base_url=base_url,
                examples=examples,
            )

        with st.spinner("Starting the pipeline..."):
            logs = run_pipeline(PIPELINE_PATH)

        st.success(f"Pipeline started successfully! πŸš€")

        with st.expander(label="View Logs", expanded=True):
            for out in logs:
                st.text(out)
    else:
        st.error("Please fill all the required fields.")