File size: 6,522 Bytes
e6d6732
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b215ba8
e6d6732
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

import numpy as np
from scipy.optimize import curve_fit
from typing import Tuple, List
import cv2

point = Tuple[float,float]
line = Tuple[point, point]
measurements = List[line]

class LineFit:
    def __init__(self, n: int, step_size:float) -> None:
        """Model that fits a line in a binary image and measures diameter of fibers

        :param n: number of measurements to do along the fitted line.
        :param step_size: step size of diameter measurement (in pixels). Can be fraction.
        """
        self.n = n
        self.step_size = step_size

    def get_coordinates(self, im, value_for_mask):
        #I = rgb2gray(I_orig) #we can delete this if we get binary images
        mask = im > value_for_mask
        fiber_coor = np.argwhere(mask)
        x = fiber_coor[:, 1]
        y = fiber_coor[:, 0]
        return x, y

    def func_line(self, x, a, b):
        return a * x + b

    def func_line_inv(self, y, a, b):
        return (y - b)/a

    def get_fited_line_x_y(self, im):
        value_for_mask = (int(np.max(im))+int(np.min(im)))/2 # Pixels to mask in get_coordinate
        x, y = self.get_coordinates(im, value_for_mask)
        popt, pcov = curve_fit(self.func_line, x, y)
        return x, y, popt, pcov

    def get_fited_line_y_x(self, im):
        value_for_mask = (int(np.max(im))+int(np.min(im)))/2 # Pixels to mask in get_coordinate
        x, y = self.get_coordinates(im, value_for_mask)
        popt, pcov = curve_fit(self.func_line, y, x)
        return x, y, popt, pcov

    def get_better_fit(self, x, y, popt, popt_inv, pcov, pcov_inv):
        diagonal = np.diagonal(pcov)
        diagonal_inv = np.diagonal(pcov_inv)
        if np.less(diagonal, diagonal_inv).all() == True:
            popt_fit = popt
            x_line = np.arange(0, max(x), 1)
            y_line = []
            for i in x_line:
                a = self.func_line(x_line[i], *popt)
                y_line.append(a)
            y_fit = y_line
            x_fit = x_line
            p1 = [x_fit[0],y_fit[0]]
            p2 = [x_fit[-1],y_fit[-1]]
        elif np.less(diagonal, diagonal_inv).all() == False:
            popt_fit = [1/popt_inv[0], (-popt_inv[1])/popt_inv[0]]
            y_line = np.arange(0, max(y), 1)
            x_line = []
            for i in y_line:
                a = self.func_line(y_line[i], *popt_inv)
                x_line.append(a)
            y_fit = y_line
            x_fit = x_line
            p1 = [x_fit[0],y_fit[0]]
            p2 = [x_fit[-1],y_fit[-1]]
        else:
            print("One of the pcov values is True and the rest are False")
        return popt_fit, x_fit, y_fit, p1, p2

    def get_point(self, t, p1, p2):
        dx = p2[0]-p1[0]
        dy = p2[1]-p1[1]
        p = [(dx * t + p1[0]), (dy * t + p1[1])]
        return p, dx, dy

    def get_normal_vector(self, t, dx, dy, p3):
        n_pos = [-dy, dx]
        mag_pos = np.linalg.norm(n_pos)
        nu_pos = n_pos/mag_pos
        u_pos = [(nu_pos[0] * t + p3[0]), (nu_pos[1] * t + p3[1])]
        return u_pos

    def is_inside(self, im, pos):
        if not (0 <= pos[0] < im.shape[0]):
            return False
        if not (0 <= pos[1] < im.shape[1]):
            return False
        return True

    def get_pixels_half (self, pos_or_neg, im, dx, dy, p3):
        color_threshold = (int(np.max(im))+int(np.min(im)))/2
        for ts in (range(len(im[0]))):
            u = self.get_normal_vector((pos_or_neg*(ts+(self.step_size))), dx, dy, p3) 
            test_point = round(u[1]),round(u[0])
            if not self.is_inside(im, test_point):
                return None, None
            test = im[test_point[0], test_point[1]] > color_threshold
            if test == False:
                pixels = ts - 1
                break
        # plt.plot(u[0], u[1], 'c.', markersize=12)
        return pixels, (u[0], u[1])


    def get_calculated_diameter(self, im, p1, p2):
        color_threshold = (int(np.max(im))+int(np.min(im)))/2
        diameters = []
        lines = []
        #mask_meas_lines = np.zeros_like(im)
        for n in range(1, self.n+1): 
            t = 1/(self.n+1) 
            p3, dx, dy = self.get_point((t * n), p1, p2)
            test_point = round(p3[1]),round(p3[0])
            if not self.is_inside(im, test_point):
                continue
            true_point = im[test_point[0], test_point[1]] > color_threshold
            if true_point == False:
                continue
            if true_point == True:
                radius_p, cp1 = self.get_pixels_half(1, im, dx, dy, p3)
                radius_n, cp2 = self.get_pixels_half(-1, im, dx, dy, p3)
                if (radius_p != None) and (radius_n != None):
                    max_val = max(radius_p, radius_n)
                    min_val = min(radius_p, radius_n)
                    equal = abs((max_val - min_val)/(max_val + 1e-5))
                    if equal < 0.1:
                        lines.append((cp1,cp2))
                        diameters.append(radius_p+radius_n)
                        # mask_meas_lines = self.mask_measured_lines(im, lines)
                        # plt.plot(p3[0], p3[1], 'r.', markersize=12)
        calculated_diameter = np.array(diameters).mean()
        return calculated_diameter, lines

    def line_to_arrays(self, line):
        return [line[0][0], line[1][0]], [line[0][1], line[1][1]]

    def mask_measured_lines(self, im, lines):
        mask = np.zeros_like(im)
        for p1, p2 in lines:
            if not (p1 == None or p2 == None):
                cv2.line(mask, np.array(p1).astype(np.int32), np.array(p2).astype(np.int32), 1, 1)
        return mask

    def predict(self, im: np.ndarray):
        x, y, popt, pcov = self.get_fited_line_x_y(im)
        _, _, popt_inv, pcov_inv = self.get_fited_line_y_x(im)
        popt_fit, x_fit, y_fit, p1, p2 = self.get_better_fit(x, y, popt, popt_inv, pcov, pcov_inv)
        calculated_diameter, lines = self.get_calculated_diameter(im, p1, p2)
        mask_meas_lines = self.mask_measured_lines(im, lines)
        #for line in lines:
        #    plt.plot(*self.line_to_arrays(line), 'c-')
        return calculated_diameter, lines
 
if __name__ == "__main__":
    import os 

    model = LineFit(10, 0.5)
    dataset_path = "/Users/carmenlopez/dev/diameterY/scratch/dataset_files"
    example_path = os.path.join(dataset_path, "test_0005.npz")
    example = np.load(example_path)
    diameter_pred, mask_meas_lines = model.predict(example["x"])
    print(diameter_pred, example["d"])