File size: 11,155 Bytes
8ebda9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
from pytorch_lightning import LightningModule
from pytorch_lightning.strategies import DeepSpeedStrategy
from deepspeed.ops.adam import DeepSpeedCPUAdam, FusedAdam
from transformers.optimization import AdamW, TYPE_TO_SCHEDULER_FUNCTION
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler
from transformers.trainer_utils import SchedulerType
from typing import Optional, Union
import warnings
import types


def add_module_args(parent_args):
    parser = parent_args.add_argument_group('Basic Module')
    parser.add_argument('--learning_rate', default=5e-5, type=float)
    parser.add_argument('--min_learning_rate', default=1e-7, type=float)
    parser.add_argument('--lr_decay_steps', default=0, type=int)
    # lr decay的时候会依赖total_steps,这里设置的是total_steps的比例,比如我只需要前50%步做decay,ratio设置为0.5
    parser.add_argument('--lr_decay_ratio', default=1.0, type=float)
    parser.add_argument('--warmup_steps', default=0, type=int)
    parser.add_argument('--warmup_ratio', default=0.1, type=float)
    parser.add_argument('--weight_decay', default=1e-1, type=float)
    parser.add_argument('--adam_beta1', default=0.9, type=float)
    parser.add_argument('--adam_beta2', default=0.999, type=float)
    parser.add_argument('--adam_epsilon', default=1e-8, type=float)
    parser.add_argument('--model_path', default=None, type=str)
    parser.add_argument('--scheduler_type', default='polynomial', type=str)
    return parent_args


def add_inverse_square_args(parent_args):
    parser = parent_args.add_argument_group('Basic Module')
    parser.add_argument('--warmup_min_lr', default=1e-9, type=float)
    parser.add_argument('--warmup_max_lr', default=1e-4, type=float)

    return parent_args


def get_default_update_params(pl_model: LightningModule):
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight', 'layer_norm.', 'layernorm.']
    optimizer_grouped_params = [
        {'params': [p for n, p in pl_model.named_parameters() if not any(
            nd in n for nd in no_decay) and p.requires_grad], 'weight_decay': pl_model.hparams.weight_decay},
        {'params': [p for n, p in pl_model.named_parameters() if any(
            nd in n for nd in no_decay) and p.requires_grad], 'weight_decay': 0.0}
    ]
    return optimizer_grouped_params


def configure_optimizers(pl_model: LightningModule, model_params=None):
    '''
    Args:
        pl_model: lightning module
        model_params: 需要优化的模型参数
    '''
    # get params that optimizer need
    if model_params is None:
        optimizer_grouped_params = get_default_update_params(pl_model)
    else:
        optimizer_grouped_params = model_params
    # Configure optimizer.
    if isinstance(pl_model.trainer.strategy, DeepSpeedStrategy):
        if 'offload_optimizer' in pl_model.trainer.strategy.config['zero_optimization']:
            optimizer = DeepSpeedCPUAdam(
                optimizer_grouped_params, adamw_mode=True,
                lr=pl_model.hparams.learning_rate,
                betas=(pl_model.hparams.adam_beta1, pl_model.hparams.adam_beta2), eps=pl_model.hparams.adam_epsilon)
        else:
            optimizer = FusedAdam(
                optimizer_grouped_params, adam_w_mode=True,
                lr=pl_model.hparams.learning_rate,
                betas=(pl_model.hparams.adam_beta1, pl_model.hparams.adam_beta2), eps=pl_model.hparams.adam_epsilon)
    # elif isinstance(pl_model.trainer.strategy, ColossalAIStrategy):
    #     from colossalai.nn.optimizer import HybridAdam
    #     optimizer = HybridAdam(
    #         optimizer_grouped_params,
    #         lr=pl_model.hparams.learning_rate,
    #         betas=(pl_model.hparams.adam_beta1, pl_model.hparams.adam_beta2),
    #         eps=pl_model.hparams.adam_epsilon)
    else:
        optimizer = AdamW(optimizer_grouped_params, lr=pl_model.hparams.learning_rate,
                          betas=(pl_model.hparams.adam_beta1, pl_model.hparams.adam_beta2),
                          eps=pl_model.hparams.adam_epsilon)
    # Configure learning rate scheduler.

    warmup_steps = pl_model.hparams.warmup_ratio * \
        pl_model.total_steps if pl_model.hparams.warmup_steps == 0 else pl_model.hparams.warmup_steps

    if pl_model.hparams.scheduler_type == "inverse_sqrt":
        scheduler = inverse_square_root_schedule(optimizer=optimizer,
                                                 num_warmup_steps=warmup_steps, lr_min=pl_model.hparams.warmup_min_lr, lr_max=pl_model.hparams.warmup_max_lr)
    else:
        total_steps = pl_model.hparams.lr_decay_ratio * \
            pl_model.total_steps if pl_model.hparams.lr_decay_steps == 0 else pl_model.hparams.lr_decay_steps
        scheduler = get_scheduler(name=pl_model.hparams.scheduler_type, optimizer=optimizer,
                                  num_warmup_steps=warmup_steps, num_training_steps=total_steps,
                                  lr_end=pl_model.hparams.min_learning_rate)
    scheduler = {"scheduler": scheduler, "interval": "step", "frequency": 1}
    return [optimizer], [scheduler]


def inverse_square_root_schedule(
        optimizer: Optimizer,
        num_warmup_steps: int = 4000,
        lr_min=1e-9,
        lr_max=1e-4,
        power=0.5,
        last_epoch: int = -1):

    lr_init = optimizer.defaults["lr"]
    if (lr_min > lr_max):
        raise ValueError(f"lr_min ({lr_min}) must be be smaller than lr_max ({lr_max})")

    lr_step = (lr_max - lr_init) / num_warmup_steps
    decay_factor = lr_max * num_warmup_steps**power

    def lr_lambda(current_step: int):
        # 自定义函数
        if current_step < num_warmup_steps:
            return lr_step * current_step
        return decay_factor * current_step ** (-power)

    return Direct_LR(optimizer, lr_lambda, last_epoch, True)


class Direct_LR(_LRScheduler):
    """
    Modified from LambdaLR
    """

    def __init__(self, optimizer, lr_lambda, last_epoch=-1, warmup_steps=4000, verbose=False):
        self.optimizer = optimizer
        self.warmup_steps = warmup_steps
        if not isinstance(lr_lambda, list) and not isinstance(lr_lambda, tuple):
            self.lr_lambdas = [lr_lambda] * len(optimizer.param_groups)
        else:
            if len(lr_lambda) != len(optimizer.param_groups):
                raise ValueError("Expected {} lr_lambdas, but got {}".format(
                    len(optimizer.param_groups), len(lr_lambda)))
            self.lr_lambdas = list(lr_lambda)
        super(Direct_LR, self).__init__(optimizer, last_epoch, verbose)

    def state_dict(self):
        """Returns the state of the scheduler as a :class:`dict`.

        It contains an entry for every variable in self.__dict__ which
        is not the optimizer.
        The learning rate lambda functions will only be saved if they are callable objects
        and not if they are functions or lambdas.

        When saving or loading the scheduler, please make sure to also save or load the state of the optimizer.
        """

        state_dict = {key: value for key, value in self.__dict__.items() if key not in ('optimizer', 'lr_lambdas')}
        state_dict['lr_lambdas'] = [None] * len(self.lr_lambdas)

        for idx, fn in enumerate(self.lr_lambdas):
            if not isinstance(fn, types.FunctionType):
                state_dict['lr_lambdas'][idx] = fn.__dict__.copy()

        return state_dict

    def load_state_dict(self, state_dict):
        """Loads the schedulers state.

        When saving or loading the scheduler, please make sure to also save or load the state of the optimizer.

        Args:
            state_dict (dict): scheduler state. Should be an object returned
                from a call to :meth:`state_dict`.
        """

        lr_lambdas = state_dict.pop('lr_lambdas')
        self.__dict__.update(state_dict)
        # Restore state_dict keys in order to prevent side effects
        # https://github.com/pytorch/pytorch/issues/32756
        state_dict['lr_lambdas'] = lr_lambdas

        for idx, fn in enumerate(lr_lambdas):
            if fn is not None:
                self.lr_lambdas[idx].__dict__.update(fn)

    def get_lr(self):
        if not self._get_lr_called_within_step:
            warnings.warn("To get the last learning rate computed by the scheduler, "
                          "please use `get_last_lr()`.")

        if self._step_count < self.warmup_steps:
            return [base_lr + lmbda(self.last_epoch)
                    for lmbda, base_lr in zip(self.lr_lambdas, self.base_lrs)]

        return [lmbda(self.last_epoch) for lmbda in self.lr_lambdas]


def get_total_steps(trainer, hparams):
    train_loader = trainer._data_connector._train_dataloader_source.dataloader()
    # Calculate total steps
    if trainer.max_epochs > 0:
        world_size = trainer.world_size
        tb_size = hparams.train_batchsize * max(1, world_size)
        ab_size = trainer.accumulate_grad_batches
        total_steps = (len(train_loader.dataset) *
                       trainer.max_epochs // tb_size) // ab_size
    else:
        total_steps = trainer.max_steps
    return total_steps


def get_scheduler(
    name: Union[str, SchedulerType],
    optimizer: Optimizer,
    num_warmup_steps: Optional[int] = None,
    num_training_steps: Optional[int] = None,
    lr_end: Optional[float] = None
):
    """
    Unified API to get any scheduler from its name.

    Args:
        name (`str` or `SchedulerType`):
            The name of the scheduler to use.
        optimizer (`torch.optim.Optimizer`):
            The optimizer that will be used during training.
        num_warmup_steps (`int`, *optional*):
            The number of warmup steps to do. This is not required by all schedulers (hence the argument being
            optional), the function will raise an error if it's unset and the scheduler type requires it.
        num_training_steps (`int``, *optional*):
            The number of training steps to do. This is not required by all schedulers (hence the argument being
            optional), the function will raise an error if it's unset and the scheduler type requires it.
    """
    name = SchedulerType(name)
    schedule_func = TYPE_TO_SCHEDULER_FUNCTION[name]
    if name == SchedulerType.CONSTANT:
        return schedule_func(optimizer)

    # All other schedulers require `num_warmup_steps`
    if num_warmup_steps is None:
        raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument.")

    if name == SchedulerType.CONSTANT_WITH_WARMUP:
        return schedule_func(optimizer, num_warmup_steps=num_warmup_steps)

    # All other schedulers require `num_training_steps`
    if num_training_steps is None:
        raise ValueError(f"{name} requires `num_training_steps`, please provide that argument.")

    if name == SchedulerType.POLYNOMIAL:
        return schedule_func(optimizer, num_warmup_steps=num_warmup_steps,
                             num_training_steps=num_training_steps, lr_end=lr_end)

    return schedule_func(optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps)