File size: 6,086 Bytes
8ebda9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# -*- encoding: utf-8 -*-
'''
Copyright 2022 The International Digital Economy Academy (IDEA). CCNL team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
@File    :   qa_dataset.py
@Time    :   2022/10/28 19:57
@Author  :   He Junqing
@Version :   1.0
@Contact :   hejunqing@idea.edu.cn
@License :   (C)Copyright 2022-2023, CCNL-IDEA
'''
# here put the import lib

from dataclasses import dataclass
import numpy as np
import torch
from torch.nn.utils.rnn import pad_sequence

from fengshen.data.t5_dataloader.t5_gen_datasets import DialogDataset


class T5StyleDataset(DialogDataset):

    @staticmethod
    def add_data_specific_args(parent_args):
        parser = parent_args.add_argument_group("Dataset")
        parser.add_argument("--max_seq_length", default=512, type=int)
        parser.add_argument("--max_knowledge_length", default=128, type=int)
        parser.add_argument("--max_target_length", default=128, type=int)
        return parent_args

    def regular_tokenize(self, sample):
        """
        sample.keys:question:str,context:stc, answer:[],idx:int,ans_span:[]
        """
        plain_text = (
            "question:"
            + sample["question"]
            + "knowledge:"
            + sample["context"][: self.max_knowledge_length]
        )
        l_text = len(plain_text)

        ctx_len = self.max_seq_length - l_text - 1
        if ctx_len > 0 and "history" in sample:
            context = "[SEP]".join(sample["history"])
            plain_text += "context:" + context

        res_prefix = self.tokenizer.encode("answer:", add_special_tokens=False)
        # res_prefix.tolist()
        l_rp = len(res_prefix)

        tokenized = self.tokenizer.encode(
            plain_text,
            add_special_tokens=False,
            truncation=True,
            max_length=self.max_seq_length - 2 - l_rp,
        )
        # tokenized.tolist()
        tokenized += res_prefix
        # add maskid
        mask_id = self.tokenizer.convert_tokens_to_ids("<extra_id_0>")
        tokenized.append(mask_id)
        tokenized.append(self.eos_token_id)
        # print(tokenized)

        target_ids = self.tokenizer.encode(
            "<extra_id_0>" + sample["answer"][0],
            add_special_tokens=True,
            truncation=True,
            max_length=self.max_target_length,
        )

        # print(target_ids)
        tokenized_sample = {}
        tokenized_sample["input_ids"] = np.array(tokenized, dtype=np.int32)
        tokenized_sample["attention_mask"] = np.ones(len(tokenized), dtype=np.int8)
        tokenized_sample["labels"] = np.array(target_ids, dtype=np.int32)
        tokenized_sample["idx"] = sample["idx"]
        # print(tokenized_sample)
        return tokenized_sample


@dataclass
class TextGenCollator:
    '''
    '''
    config: None
    pad_token_id: -100
    decoder_start_token_id: 0
    formator: str = 't5style'

    def setup(self):
        pass

    def __call__(self, samples):
        batch = {
            k: [
                torch.tensor(samples[i][k], dtype=torch.int64)
                for i in range(len(samples))
            ]
            for k in ["input_ids", "attention_mask", "labels"]
        }
        batch["idx"] = torch.tensor([samples[i]["idx"] for i in range(len(samples))])

        # print(batch)
        for k, v in batch.items():
            if k != "labels" and k != "idx":
                batch[k] = pad_sequence(
                    v, batch_first=True, padding_value=self.pad_token_id
                )
            elif k == "labels":
                batch[k] = pad_sequence(v, batch_first=True, padding_value=-100)

        batch["decoder_input_ids"] = torch.tensor(
            self.shift_tokens_right(
                batch["labels"], self.pad_token_id, self.decoder_start_token_id
            ),
            dtype=torch.long,
        )
        return batch

    def shift_tokens_right(
        self, input_ids: np.array, pad_token_id: int, decoder_start_token_id: int
    ) -> np.ndarray:
        """
        Shift input ids one token to the right.
        """
        shifted_input_ids = np.zeros_like(input_ids)
        shifted_input_ids[:, 1:] = input_ids[:, :-1]
        shifted_input_ids[:, 0] = decoder_start_token_id

        shifted_input_ids = np.where(
            shifted_input_ids == -100, pad_token_id, shifted_input_ids
        )
        return shifted_input_ids


if __name__ == "__main__":
    # test
    import argparse

    total_parser = argparse.ArgumentParser("DATASET parser")
    total_parser.add_argument(
        "--tokenizer_type",
        default="t5_tokenizer",
        choices=["bert_tokenizer", "t5_tokenizer"],
    )
    total_parser.add_argument("--preprocessing_num_workers", default="4", type=int)
    total_parser.add_argument(
        "--new_vocab_path",
        default=None,
        type=str,
    )

    total_parser.add_argument(
        "--pretrained_model_path",
        default="YOUR DOWNLOAD MODEL PATH",
    )
    total_parser.add_argument("--train_split_size", default=0.995, type=int)
    total_parser.add_argument(
        "--formator", default="t5style", choices=["t5style", "squad", "dialog"]
    )
    total_parser = TextGenCollator.add_data_specific_args(total_parser)
    args = total_parser.parse_args()
    args.train_data_path = "cmrc"
    ds = T5StyleDataset("cmrc", args, "dev")
    print(len(ds))
    for i in range(10):
        print(ds[i])

    dl = TextGenCollator(args)
    for i in range(5):
        for batch in dl.val_dataloader():
            print(batch)
            print(batch["input_ids"])
            print(batch["no_answer"])
            print(batch["decoder_input_ids"])
            print(batch["labels"])