File size: 40,954 Bytes
5353f6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 |
# pylint: skip-file
import math
import re
import numpy as np
import torch
import torch.nn as nn
import torch.utils.checkpoint as checkpoint
from einops import rearrange
from einops.layers.torch import Rearrange
from torch import Tensor
from torch.nn import functional as F
from .timm.drop import DropPath
from .timm.weight_init import trunc_normal_
def img2windows(img, H_sp, W_sp):
"""
Input: Image (B, C, H, W)
Output: Window Partition (B', N, C)
"""
B, C, H, W = img.shape
img_reshape = img.view(B, C, H // H_sp, H_sp, W // W_sp, W_sp)
img_perm = (
img_reshape.permute(0, 2, 4, 3, 5, 1).contiguous().reshape(-1, H_sp * W_sp, C)
)
return img_perm
def windows2img(img_splits_hw, H_sp, W_sp, H, W):
"""
Input: Window Partition (B', N, C)
Output: Image (B, H, W, C)
"""
B = int(img_splits_hw.shape[0] / (H * W / H_sp / W_sp))
img = img_splits_hw.view(B, H // H_sp, W // W_sp, H_sp, W_sp, -1)
img = img.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return img
class SpatialGate(nn.Module):
"""Spatial-Gate.
Args:
dim (int): Half of input channels.
"""
def __init__(self, dim):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.conv = nn.Conv2d(
dim, dim, kernel_size=3, stride=1, padding=1, groups=dim
) # DW Conv
def forward(self, x, H, W):
# Split
x1, x2 = x.chunk(2, dim=-1)
B, N, C = x.shape
x2 = (
self.conv(self.norm(x2).transpose(1, 2).contiguous().view(B, C // 2, H, W))
.flatten(2)
.transpose(-1, -2)
.contiguous()
)
return x1 * x2
class SGFN(nn.Module):
"""Spatial-Gate Feed-Forward Network.
Args:
in_features (int): Number of input channels.
hidden_features (int | None): Number of hidden channels. Default: None
out_features (int | None): Number of output channels. Default: None
act_layer (nn.Module): Activation layer. Default: nn.GELU
drop (float): Dropout rate. Default: 0.0
"""
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.0,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.sg = SpatialGate(hidden_features // 2)
self.fc2 = nn.Linear(hidden_features // 2, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x, H, W):
"""
Input: x: (B, H*W, C), H, W
Output: x: (B, H*W, C)
"""
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.sg(x, H, W)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class DynamicPosBias(nn.Module):
# The implementation builds on Crossformer code https://github.com/cheerss/CrossFormer/blob/main/models/crossformer.py
"""Dynamic Relative Position Bias.
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads.
residual (bool): If True, use residual strage to connect conv.
"""
def __init__(self, dim, num_heads, residual):
super().__init__()
self.residual = residual
self.num_heads = num_heads
self.pos_dim = dim // 4
self.pos_proj = nn.Linear(2, self.pos_dim)
self.pos1 = nn.Sequential(
nn.LayerNorm(self.pos_dim),
nn.ReLU(inplace=True),
nn.Linear(self.pos_dim, self.pos_dim),
)
self.pos2 = nn.Sequential(
nn.LayerNorm(self.pos_dim),
nn.ReLU(inplace=True),
nn.Linear(self.pos_dim, self.pos_dim),
)
self.pos3 = nn.Sequential(
nn.LayerNorm(self.pos_dim),
nn.ReLU(inplace=True),
nn.Linear(self.pos_dim, self.num_heads),
)
def forward(self, biases):
if self.residual:
pos = self.pos_proj(biases) # 2Gh-1 * 2Gw-1, heads
pos = pos + self.pos1(pos)
pos = pos + self.pos2(pos)
pos = self.pos3(pos)
else:
pos = self.pos3(self.pos2(self.pos1(self.pos_proj(biases))))
return pos
class Spatial_Attention(nn.Module):
"""Spatial Window Self-Attention.
It supports rectangle window (containing square window).
Args:
dim (int): Number of input channels.
idx (int): The indentix of window. (0/1)
split_size (tuple(int)): Height and Width of spatial window.
dim_out (int | None): The dimension of the attention output. Default: None
num_heads (int): Number of attention heads. Default: 6
attn_drop (float): Dropout ratio of attention weight. Default: 0.0
proj_drop (float): Dropout ratio of output. Default: 0.0
qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set
position_bias (bool): The dynamic relative position bias. Default: True
"""
def __init__(
self,
dim,
idx,
split_size=[8, 8],
dim_out=None,
num_heads=6,
attn_drop=0.0,
proj_drop=0.0,
qk_scale=None,
position_bias=True,
):
super().__init__()
self.dim = dim
self.dim_out = dim_out or dim
self.split_size = split_size
self.num_heads = num_heads
self.idx = idx
self.position_bias = position_bias
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
if idx == 0:
H_sp, W_sp = self.split_size[0], self.split_size[1]
elif idx == 1:
W_sp, H_sp = self.split_size[0], self.split_size[1]
else:
print("ERROR MODE", idx)
exit(0)
self.H_sp = H_sp
self.W_sp = W_sp
if self.position_bias:
self.pos = DynamicPosBias(self.dim // 4, self.num_heads, residual=False)
# generate mother-set
position_bias_h = torch.arange(1 - self.H_sp, self.H_sp)
position_bias_w = torch.arange(1 - self.W_sp, self.W_sp)
biases = torch.stack(torch.meshgrid([position_bias_h, position_bias_w]))
biases = biases.flatten(1).transpose(0, 1).contiguous().float()
self.register_buffer("rpe_biases", biases)
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(self.H_sp)
coords_w = torch.arange(self.W_sp)
coords = torch.stack(torch.meshgrid([coords_h, coords_w]))
coords_flatten = torch.flatten(coords, 1)
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
relative_coords[:, :, 0] += self.H_sp - 1
relative_coords[:, :, 1] += self.W_sp - 1
relative_coords[:, :, 0] *= 2 * self.W_sp - 1
relative_position_index = relative_coords.sum(-1)
self.register_buffer("relative_position_index", relative_position_index)
self.attn_drop = nn.Dropout(attn_drop)
def im2win(self, x, H, W):
B, N, C = x.shape
x = x.transpose(-2, -1).contiguous().view(B, C, H, W)
x = img2windows(x, self.H_sp, self.W_sp)
x = (
x.reshape(-1, self.H_sp * self.W_sp, self.num_heads, C // self.num_heads)
.permute(0, 2, 1, 3)
.contiguous()
)
return x
def forward(self, qkv, H, W, mask=None):
"""
Input: qkv: (B, 3*L, C), H, W, mask: (B, N, N), N is the window size
Output: x (B, H, W, C)
"""
q, k, v = qkv[0], qkv[1], qkv[2]
B, L, C = q.shape
assert L == H * W, "flatten img_tokens has wrong size"
# partition the q,k,v, image to window
q = self.im2win(q, H, W)
k = self.im2win(k, H, W)
v = self.im2win(v, H, W)
q = q * self.scale
attn = q @ k.transpose(-2, -1) # B head N C @ B head C N --> B head N N
# calculate drpe
if self.position_bias:
pos = self.pos(self.rpe_biases)
# select position bias
relative_position_bias = pos[self.relative_position_index.view(-1)].view(
self.H_sp * self.W_sp, self.H_sp * self.W_sp, -1
)
relative_position_bias = relative_position_bias.permute(
2, 0, 1
).contiguous()
attn = attn + relative_position_bias.unsqueeze(0)
N = attn.shape[3]
# use mask for shift window
if mask is not None:
nW = mask.shape[0]
attn = attn.view(B, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(
0
)
attn = attn.view(-1, self.num_heads, N, N)
attn = nn.functional.softmax(attn, dim=-1, dtype=attn.dtype)
attn = self.attn_drop(attn)
x = attn @ v
x = x.transpose(1, 2).reshape(
-1, self.H_sp * self.W_sp, C
) # B head N N @ B head N C
# merge the window, window to image
x = windows2img(x, self.H_sp, self.W_sp, H, W) # B H' W' C
return x
class Adaptive_Spatial_Attention(nn.Module):
# The implementation builds on CAT code https://github.com/Zhengchen1999/CAT
"""Adaptive Spatial Self-Attention
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads. Default: 6
split_size (tuple(int)): Height and Width of spatial window.
shift_size (tuple(int)): Shift size for spatial window.
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set.
drop (float): Dropout rate. Default: 0.0
attn_drop (float): Attention dropout rate. Default: 0.0
rg_idx (int): The indentix of Residual Group (RG)
b_idx (int): The indentix of Block in each RG
"""
def __init__(
self,
dim,
num_heads,
reso=64,
split_size=[8, 8],
shift_size=[1, 2],
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
rg_idx=0,
b_idx=0,
):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.split_size = split_size
self.shift_size = shift_size
self.b_idx = b_idx
self.rg_idx = rg_idx
self.patches_resolution = reso
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
assert (
0 <= self.shift_size[0] < self.split_size[0]
), "shift_size must in 0-split_size0"
assert (
0 <= self.shift_size[1] < self.split_size[1]
), "shift_size must in 0-split_size1"
self.branch_num = 2
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(drop)
self.attns = nn.ModuleList(
[
Spatial_Attention(
dim // 2,
idx=i,
split_size=split_size,
num_heads=num_heads // 2,
dim_out=dim // 2,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
position_bias=True,
)
for i in range(self.branch_num)
]
)
if (self.rg_idx % 2 == 0 and self.b_idx > 0 and (self.b_idx - 2) % 4 == 0) or (
self.rg_idx % 2 != 0 and self.b_idx % 4 == 0
):
attn_mask = self.calculate_mask(
self.patches_resolution, self.patches_resolution
)
self.register_buffer("attn_mask_0", attn_mask[0])
self.register_buffer("attn_mask_1", attn_mask[1])
else:
attn_mask = None
self.register_buffer("attn_mask_0", None)
self.register_buffer("attn_mask_1", None)
self.dwconv = nn.Sequential(
nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, groups=dim),
nn.BatchNorm2d(dim),
nn.GELU(),
)
self.channel_interaction = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(dim, dim // 8, kernel_size=1),
nn.BatchNorm2d(dim // 8),
nn.GELU(),
nn.Conv2d(dim // 8, dim, kernel_size=1),
)
self.spatial_interaction = nn.Sequential(
nn.Conv2d(dim, dim // 16, kernel_size=1),
nn.BatchNorm2d(dim // 16),
nn.GELU(),
nn.Conv2d(dim // 16, 1, kernel_size=1),
)
def calculate_mask(self, H, W):
# The implementation builds on Swin Transformer code https://github.com/microsoft/Swin-Transformer/blob/main/models/swin_transformer.py
# calculate attention mask for shift window
img_mask_0 = torch.zeros((1, H, W, 1)) # 1 H W 1 idx=0
img_mask_1 = torch.zeros((1, H, W, 1)) # 1 H W 1 idx=1
h_slices_0 = (
slice(0, -self.split_size[0]),
slice(-self.split_size[0], -self.shift_size[0]),
slice(-self.shift_size[0], None),
)
w_slices_0 = (
slice(0, -self.split_size[1]),
slice(-self.split_size[1], -self.shift_size[1]),
slice(-self.shift_size[1], None),
)
h_slices_1 = (
slice(0, -self.split_size[1]),
slice(-self.split_size[1], -self.shift_size[1]),
slice(-self.shift_size[1], None),
)
w_slices_1 = (
slice(0, -self.split_size[0]),
slice(-self.split_size[0], -self.shift_size[0]),
slice(-self.shift_size[0], None),
)
cnt = 0
for h in h_slices_0:
for w in w_slices_0:
img_mask_0[:, h, w, :] = cnt
cnt += 1
cnt = 0
for h in h_slices_1:
for w in w_slices_1:
img_mask_1[:, h, w, :] = cnt
cnt += 1
# calculate mask for window-0
img_mask_0 = img_mask_0.view(
1,
H // self.split_size[0],
self.split_size[0],
W // self.split_size[1],
self.split_size[1],
1,
)
img_mask_0 = (
img_mask_0.permute(0, 1, 3, 2, 4, 5)
.contiguous()
.view(-1, self.split_size[0], self.split_size[1], 1)
) # nW, sw[0], sw[1], 1
mask_windows_0 = img_mask_0.view(-1, self.split_size[0] * self.split_size[1])
attn_mask_0 = mask_windows_0.unsqueeze(1) - mask_windows_0.unsqueeze(2)
attn_mask_0 = attn_mask_0.masked_fill(
attn_mask_0 != 0, float(-100.0)
).masked_fill(attn_mask_0 == 0, float(0.0))
# calculate mask for window-1
img_mask_1 = img_mask_1.view(
1,
H // self.split_size[1],
self.split_size[1],
W // self.split_size[0],
self.split_size[0],
1,
)
img_mask_1 = (
img_mask_1.permute(0, 1, 3, 2, 4, 5)
.contiguous()
.view(-1, self.split_size[1], self.split_size[0], 1)
) # nW, sw[1], sw[0], 1
mask_windows_1 = img_mask_1.view(-1, self.split_size[1] * self.split_size[0])
attn_mask_1 = mask_windows_1.unsqueeze(1) - mask_windows_1.unsqueeze(2)
attn_mask_1 = attn_mask_1.masked_fill(
attn_mask_1 != 0, float(-100.0)
).masked_fill(attn_mask_1 == 0, float(0.0))
return attn_mask_0, attn_mask_1
def forward(self, x, H, W):
"""
Input: x: (B, H*W, C), H, W
Output: x: (B, H*W, C)
"""
B, L, C = x.shape
assert L == H * W, "flatten img_tokens has wrong size"
qkv = self.qkv(x).reshape(B, -1, 3, C).permute(2, 0, 1, 3) # 3, B, HW, C
# V without partition
v = qkv[2].transpose(-2, -1).contiguous().view(B, C, H, W)
# image padding
max_split_size = max(self.split_size[0], self.split_size[1])
pad_l = pad_t = 0
pad_r = (max_split_size - W % max_split_size) % max_split_size
pad_b = (max_split_size - H % max_split_size) % max_split_size
qkv = qkv.reshape(3 * B, H, W, C).permute(0, 3, 1, 2) # 3B C H W
qkv = (
F.pad(qkv, (pad_l, pad_r, pad_t, pad_b))
.reshape(3, B, C, -1)
.transpose(-2, -1)
) # l r t b
_H = pad_b + H
_W = pad_r + W
_L = _H * _W
# window-0 and window-1 on split channels [C/2, C/2]; for square windows (e.g., 8x8), window-0 and window-1 can be merged
# shift in block: (0, 4, 8, ...), (2, 6, 10, ...), (0, 4, 8, ...), (2, 6, 10, ...), ...
if (self.rg_idx % 2 == 0 and self.b_idx > 0 and (self.b_idx - 2) % 4 == 0) or (
self.rg_idx % 2 != 0 and self.b_idx % 4 == 0
):
qkv = qkv.view(3, B, _H, _W, C)
qkv_0 = torch.roll(
qkv[:, :, :, :, : C // 2],
shifts=(-self.shift_size[0], -self.shift_size[1]),
dims=(2, 3),
)
qkv_0 = qkv_0.view(3, B, _L, C // 2)
qkv_1 = torch.roll(
qkv[:, :, :, :, C // 2 :],
shifts=(-self.shift_size[1], -self.shift_size[0]),
dims=(2, 3),
)
qkv_1 = qkv_1.view(3, B, _L, C // 2)
if self.patches_resolution != _H or self.patches_resolution != _W:
mask_tmp = self.calculate_mask(_H, _W)
x1_shift = self.attns[0](qkv_0, _H, _W, mask=mask_tmp[0].to(x.device))
x2_shift = self.attns[1](qkv_1, _H, _W, mask=mask_tmp[1].to(x.device))
else:
x1_shift = self.attns[0](qkv_0, _H, _W, mask=self.attn_mask_0)
x2_shift = self.attns[1](qkv_1, _H, _W, mask=self.attn_mask_1)
x1 = torch.roll(
x1_shift, shifts=(self.shift_size[0], self.shift_size[1]), dims=(1, 2)
)
x2 = torch.roll(
x2_shift, shifts=(self.shift_size[1], self.shift_size[0]), dims=(1, 2)
)
x1 = x1[:, :H, :W, :].reshape(B, L, C // 2)
x2 = x2[:, :H, :W, :].reshape(B, L, C // 2)
# attention output
attened_x = torch.cat([x1, x2], dim=2)
else:
x1 = self.attns[0](qkv[:, :, :, : C // 2], _H, _W)[:, :H, :W, :].reshape(
B, L, C // 2
)
x2 = self.attns[1](qkv[:, :, :, C // 2 :], _H, _W)[:, :H, :W, :].reshape(
B, L, C // 2
)
# attention output
attened_x = torch.cat([x1, x2], dim=2)
# convolution output
conv_x = self.dwconv(v)
# Adaptive Interaction Module (AIM)
# C-Map (before sigmoid)
channel_map = (
self.channel_interaction(conv_x)
.permute(0, 2, 3, 1)
.contiguous()
.view(B, 1, C)
)
# S-Map (before sigmoid)
attention_reshape = attened_x.transpose(-2, -1).contiguous().view(B, C, H, W)
spatial_map = self.spatial_interaction(attention_reshape)
# C-I
attened_x = attened_x * torch.sigmoid(channel_map)
# S-I
conv_x = torch.sigmoid(spatial_map) * conv_x
conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(B, L, C)
x = attened_x + conv_x
x = self.proj(x)
x = self.proj_drop(x)
return x
class Adaptive_Channel_Attention(nn.Module):
# The implementation builds on XCiT code https://github.com/facebookresearch/xcit
"""Adaptive Channel Self-Attention
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads. Default: 6
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set.
attn_drop (float): Attention dropout rate. Default: 0.0
drop_path (float): Stochastic depth rate. Default: 0.0
"""
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
):
super().__init__()
self.num_heads = num_heads
self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1))
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.dwconv = nn.Sequential(
nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, groups=dim),
nn.BatchNorm2d(dim),
nn.GELU(),
)
self.channel_interaction = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(dim, dim // 8, kernel_size=1),
nn.BatchNorm2d(dim // 8),
nn.GELU(),
nn.Conv2d(dim // 8, dim, kernel_size=1),
)
self.spatial_interaction = nn.Sequential(
nn.Conv2d(dim, dim // 16, kernel_size=1),
nn.BatchNorm2d(dim // 16),
nn.GELU(),
nn.Conv2d(dim // 16, 1, kernel_size=1),
)
def forward(self, x, H, W):
"""
Input: x: (B, H*W, C), H, W
Output: x: (B, H*W, C)
"""
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
qkv = qkv.permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
q = q.transpose(-2, -1)
k = k.transpose(-2, -1)
v = v.transpose(-2, -1)
v_ = v.reshape(B, C, N).contiguous().view(B, C, H, W)
q = torch.nn.functional.normalize(q, dim=-1)
k = torch.nn.functional.normalize(k, dim=-1)
attn = (q @ k.transpose(-2, -1)) * self.temperature
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
# attention output
attened_x = (attn @ v).permute(0, 3, 1, 2).reshape(B, N, C)
# convolution output
conv_x = self.dwconv(v_)
# Adaptive Interaction Module (AIM)
# C-Map (before sigmoid)
attention_reshape = attened_x.transpose(-2, -1).contiguous().view(B, C, H, W)
channel_map = self.channel_interaction(attention_reshape)
# S-Map (before sigmoid)
spatial_map = (
self.spatial_interaction(conv_x)
.permute(0, 2, 3, 1)
.contiguous()
.view(B, N, 1)
)
# S-I
attened_x = attened_x * torch.sigmoid(spatial_map)
# C-I
conv_x = conv_x * torch.sigmoid(channel_map)
conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(B, N, C)
x = attened_x + conv_x
x = self.proj(x)
x = self.proj_drop(x)
return x
class DATB(nn.Module):
def __init__(
self,
dim,
num_heads,
reso=64,
split_size=[2, 4],
shift_size=[1, 2],
expansion_factor=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
rg_idx=0,
b_idx=0,
):
super().__init__()
self.norm1 = norm_layer(dim)
if b_idx % 2 == 0:
# DSTB
self.attn = Adaptive_Spatial_Attention(
dim,
num_heads=num_heads,
reso=reso,
split_size=split_size,
shift_size=shift_size,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop,
attn_drop=attn_drop,
rg_idx=rg_idx,
b_idx=b_idx,
)
else:
# DCTB
self.attn = Adaptive_Channel_Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
ffn_hidden_dim = int(dim * expansion_factor)
self.ffn = SGFN(
in_features=dim,
hidden_features=ffn_hidden_dim,
out_features=dim,
act_layer=act_layer,
)
self.norm2 = norm_layer(dim)
def forward(self, x, x_size):
"""
Input: x: (B, H*W, C), x_size: (H, W)
Output: x: (B, H*W, C)
"""
H, W = x_size
x = x + self.drop_path(self.attn(self.norm1(x), H, W))
x = x + self.drop_path(self.ffn(self.norm2(x), H, W))
return x
class ResidualGroup(nn.Module):
"""ResidualGroup
Args:
dim (int): Number of input channels.
reso (int): Input resolution.
num_heads (int): Number of attention heads.
split_size (tuple(int)): Height and Width of spatial window.
expansion_factor (float): Ratio of ffn hidden dim to embedding dim.
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set. Default: None
drop (float): Dropout rate. Default: 0
attn_drop(float): Attention dropout rate. Default: 0
drop_paths (float | None): Stochastic depth rate.
act_layer (nn.Module): Activation layer. Default: nn.GELU
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm
depth (int): Number of dual aggregation Transformer blocks in residual group.
use_chk (bool): Whether to use checkpointing to save memory.
resi_connection: The convolutional block before residual connection. '1conv'/'3conv'
"""
def __init__(
self,
dim,
reso,
num_heads,
split_size=[2, 4],
expansion_factor=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_paths=None,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
depth=2,
use_chk=False,
resi_connection="1conv",
rg_idx=0,
):
super().__init__()
self.use_chk = use_chk
self.reso = reso
self.blocks = nn.ModuleList(
[
DATB(
dim=dim,
num_heads=num_heads,
reso=reso,
split_size=split_size,
shift_size=[split_size[0] // 2, split_size[1] // 2],
expansion_factor=expansion_factor,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop,
attn_drop=attn_drop,
drop_path=drop_paths[i],
act_layer=act_layer,
norm_layer=norm_layer,
rg_idx=rg_idx,
b_idx=i,
)
for i in range(depth)
]
)
if resi_connection == "1conv":
self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
elif resi_connection == "3conv":
self.conv = nn.Sequential(
nn.Conv2d(dim, dim // 4, 3, 1, 1),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(dim // 4, dim // 4, 1, 1, 0),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(dim // 4, dim, 3, 1, 1),
)
def forward(self, x, x_size):
"""
Input: x: (B, H*W, C), x_size: (H, W)
Output: x: (B, H*W, C)
"""
H, W = x_size
res = x
for blk in self.blocks:
if self.use_chk:
x = checkpoint.checkpoint(blk, x, x_size)
else:
x = blk(x, x_size)
x = rearrange(x, "b (h w) c -> b c h w", h=H, w=W)
x = self.conv(x)
x = rearrange(x, "b c h w -> b (h w) c")
x = res + x
return x
class Upsample(nn.Sequential):
"""Upsample module.
Args:
scale (int): Scale factor. Supported scales: 2^n and 3.
num_feat (int): Channel number of intermediate features.
"""
def __init__(self, scale, num_feat):
m = []
if (scale & (scale - 1)) == 0: # scale = 2^n
for _ in range(int(math.log(scale, 2))):
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
m.append(nn.PixelShuffle(2))
elif scale == 3:
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
m.append(nn.PixelShuffle(3))
else:
raise ValueError(
f"scale {scale} is not supported. " "Supported scales: 2^n and 3."
)
super(Upsample, self).__init__(*m)
class UpsampleOneStep(nn.Sequential):
"""UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle)
Used in lightweight SR to save parameters.
Args:
scale (int): Scale factor. Supported scales: 2^n and 3.
num_feat (int): Channel number of intermediate features.
"""
def __init__(self, scale, num_feat, num_out_ch, input_resolution=None):
self.num_feat = num_feat
self.input_resolution = input_resolution
m = []
m.append(nn.Conv2d(num_feat, (scale**2) * num_out_ch, 3, 1, 1))
m.append(nn.PixelShuffle(scale))
super(UpsampleOneStep, self).__init__(*m)
def flops(self):
h, w = self.input_resolution
flops = h * w * self.num_feat * 3 * 9
return flops
class DAT(nn.Module):
"""Dual Aggregation Transformer
Args:
img_size (int): Input image size. Default: 64
in_chans (int): Number of input image channels. Default: 3
embed_dim (int): Patch embedding dimension. Default: 180
depths (tuple(int)): Depth of each residual group (number of DATB in each RG).
split_size (tuple(int)): Height and Width of spatial window.
num_heads (tuple(int)): Number of attention heads in different residual groups.
expansion_factor (float): Ratio of ffn hidden dim to embedding dim. Default: 4
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set. Default: None
drop_rate (float): Dropout rate. Default: 0
attn_drop_rate (float): Attention dropout rate. Default: 0
drop_path_rate (float): Stochastic depth rate. Default: 0.1
act_layer (nn.Module): Activation layer. Default: nn.GELU
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm
use_chk (bool): Whether to use checkpointing to save memory.
upscale: Upscale factor. 2/3/4 for image SR
img_range: Image range. 1. or 255.
resi_connection: The convolutional block before residual connection. '1conv'/'3conv'
"""
def __init__(self, state_dict):
super().__init__()
# defaults
img_size = 64
in_chans = 3
embed_dim = 180
split_size = [2, 4]
depth = [2, 2, 2, 2]
num_heads = [2, 2, 2, 2]
expansion_factor = 4.0
qkv_bias = True
qk_scale = None
drop_rate = 0.0
attn_drop_rate = 0.0
drop_path_rate = 0.1
act_layer = nn.GELU
norm_layer = nn.LayerNorm
use_chk = False
upscale = 2
img_range = 1.0
resi_connection = "1conv"
upsampler = "pixelshuffle"
self.model_arch = "DAT"
self.sub_type = "SR"
self.state = state_dict
state_keys = state_dict.keys()
if "conv_before_upsample.0.weight" in state_keys:
if "conv_up1.weight" in state_keys:
upsampler = "nearest+conv"
else:
upsampler = "pixelshuffle"
supports_fp16 = False
elif "upsample.0.weight" in state_keys:
upsampler = "pixelshuffledirect"
else:
upsampler = ""
num_feat = (
state_dict.get("conv_before_upsample.0.weight", None).shape[1]
if state_dict.get("conv_before_upsample.weight", None)
else 64
)
num_in_ch = state_dict["conv_first.weight"].shape[1]
in_chans = num_in_ch
if "conv_last.weight" in state_keys:
num_out_ch = state_dict["conv_last.weight"].shape[0]
else:
num_out_ch = num_in_ch
upscale = 1
if upsampler == "nearest+conv":
upsample_keys = [
x for x in state_keys if "conv_up" in x and "bias" not in x
]
for upsample_key in upsample_keys:
upscale *= 2
elif upsampler == "pixelshuffle":
upsample_keys = [
x
for x in state_keys
if "upsample" in x and "conv" not in x and "bias" not in x
]
for upsample_key in upsample_keys:
shape = state_dict[upsample_key].shape[0]
upscale *= math.sqrt(shape // num_feat)
upscale = int(upscale)
elif upsampler == "pixelshuffledirect":
upscale = int(
math.sqrt(state_dict["upsample.0.bias"].shape[0] // num_out_ch)
)
max_layer_num = 0
max_block_num = 0
for key in state_keys:
result = re.match(r"layers.(\d*).blocks.(\d*).norm1.weight", key)
if result:
layer_num, block_num = result.groups()
max_layer_num = max(max_layer_num, int(layer_num))
max_block_num = max(max_block_num, int(block_num))
depth = [max_block_num + 1 for _ in range(max_layer_num + 1)]
if "layers.0.blocks.1.attn.temperature" in state_keys:
num_heads_num = state_dict["layers.0.blocks.1.attn.temperature"].shape[0]
num_heads = [num_heads_num for _ in range(max_layer_num + 1)]
else:
num_heads = depth
embed_dim = state_dict["conv_first.weight"].shape[0]
expansion_factor = float(
state_dict["layers.0.blocks.0.ffn.fc1.weight"].shape[0] / embed_dim
)
# TODO: could actually count the layers, but this should do
if "layers.0.conv.4.weight" in state_keys:
resi_connection = "3conv"
else:
resi_connection = "1conv"
if "layers.0.blocks.2.attn.attn_mask_0" in state_keys:
attn_mask_0_x, attn_mask_0_y, attn_mask_0_z = state_dict[
"layers.0.blocks.2.attn.attn_mask_0"
].shape
img_size = int(math.sqrt(attn_mask_0_x * attn_mask_0_y))
if "layers.0.blocks.0.attn.attns.0.rpe_biases" in state_keys:
split_sizes = (
state_dict["layers.0.blocks.0.attn.attns.0.rpe_biases"][-1] + 1
)
split_size = [int(x) for x in split_sizes]
self.in_nc = num_in_ch
self.out_nc = num_out_ch
self.num_feat = num_feat
self.embed_dim = embed_dim
self.num_heads = num_heads
self.depth = depth
self.scale = upscale
self.upsampler = upsampler
self.img_size = img_size
self.img_range = img_range
self.expansion_factor = expansion_factor
self.resi_connection = resi_connection
self.split_size = split_size
self.supports_fp16 = False # Too much weirdness to support this at the moment
self.supports_bfp16 = True
self.min_size_restriction = 16
num_in_ch = in_chans
num_out_ch = in_chans
num_feat = 64
self.img_range = img_range
if in_chans == 3:
rgb_mean = (0.4488, 0.4371, 0.4040)
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
else:
self.mean = torch.zeros(1, 1, 1, 1)
self.upscale = upscale
self.upsampler = upsampler
# ------------------------- 1, Shallow Feature Extraction ------------------------- #
self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)
# ------------------------- 2, Deep Feature Extraction ------------------------- #
self.num_layers = len(depth)
self.use_chk = use_chk
self.num_features = (
self.embed_dim
) = embed_dim # num_features for consistency with other models
heads = num_heads
self.before_RG = nn.Sequential(
Rearrange("b c h w -> b (h w) c"), nn.LayerNorm(embed_dim)
)
curr_dim = embed_dim
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, np.sum(depth))
] # stochastic depth decay rule
self.layers = nn.ModuleList()
for i in range(self.num_layers):
layer = ResidualGroup(
dim=embed_dim,
num_heads=heads[i],
reso=img_size,
split_size=split_size,
expansion_factor=expansion_factor,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_paths=dpr[sum(depth[:i]) : sum(depth[: i + 1])],
act_layer=act_layer,
norm_layer=norm_layer,
depth=depth[i],
use_chk=use_chk,
resi_connection=resi_connection,
rg_idx=i,
)
self.layers.append(layer)
self.norm = norm_layer(curr_dim)
# build the last conv layer in deep feature extraction
if resi_connection == "1conv":
self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
elif resi_connection == "3conv":
# to save parameters and memory
self.conv_after_body = nn.Sequential(
nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1),
)
# ------------------------- 3, Reconstruction ------------------------- #
if self.upsampler == "pixelshuffle":
# for classical SR
self.conv_before_upsample = nn.Sequential(
nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True)
)
self.upsample = Upsample(upscale, num_feat)
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
elif self.upsampler == "pixelshuffledirect":
# for lightweight SR (to save parameters)
self.upsample = UpsampleOneStep(
upscale, embed_dim, num_out_ch, (img_size, img_size)
)
self.apply(self._init_weights)
self.load_state_dict(state_dict, strict=True)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(
m, (nn.LayerNorm, nn.BatchNorm2d, nn.GroupNorm, nn.InstanceNorm2d)
):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward_features(self, x):
_, _, H, W = x.shape
x_size = [H, W]
x = self.before_RG(x)
for layer in self.layers:
x = layer(x, x_size)
x = self.norm(x)
x = rearrange(x, "b (h w) c -> b c h w", h=H, w=W)
return x
def forward(self, x):
"""
Input: x: (B, C, H, W)
"""
self.mean = self.mean.type_as(x)
x = (x - self.mean) * self.img_range
if self.upsampler == "pixelshuffle":
# for image SR
x = self.conv_first(x)
x = self.conv_after_body(self.forward_features(x)) + x
x = self.conv_before_upsample(x)
x = self.conv_last(self.upsample(x))
elif self.upsampler == "pixelshuffledirect":
# for lightweight SR
x = self.conv_first(x)
x = self.conv_after_body(self.forward_features(x)) + x
x = self.upsample(x)
x = x / self.img_range + self.mean
return x
|