File size: 7,178 Bytes
93c7859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c6c671
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import torch

from transformers import pipeline

import numpy as np
import gradio as gr

def _grab_best_device(use_gpu=False):
    if torch.cuda.device_count() > 0 and use_gpu:
        device = "cuda"
    else:
        device = "cpu"
    return device

device = _grab_best_device()

default_model_per_language = {
    "english": "kakao-enterprise/vits-ljs",
    "spanish": "facebook/mms-tts-spa",
}

models_per_language = {
    "english": [
        "ylacombe/vits_ljs_midlands_male_monospeaker",
    ],
    "spanish": [
        "ylacombe/mms-spa-finetuned-chilean-monospeaker",       
    ]
}

HUB_PATH = "ylacombe/vits_ljs_midlands_male_monospeaker"


pipe_dict = {
    "current_model": "ylacombe/vits_ljs_midlands_male_monospeaker",
    "pipe":  pipeline("text-to-speech", model=HUB_PATH, device=device),
    "original_pipe": pipeline("text-to-speech", model=default_model_per_language["english"], device=device),
    "language": "english",
}

title =      """
# Explore MMS finetuning
## Or how to access truely multilingual TTS

Massively Multilingual Speech (MMS) models are light-weight, low-latency TTS models based on the [VITS architecture](https://huggingface.co/docs/transformers/model_doc/vits).

Meta's [MMS](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html),
and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts).
    
Coupled with the right data and the right training recipe, you can get an excellent finetuned version of every MMS checkpoints in **20 minutes** with as little as **80 to 150 samples**.            

Training recipe available in this [github repository](https://github.com/ylacombe/finetune-hf-vits)!
            """

max_speakers = 15


# Inference
def generate_audio(text, model_id, language):

    if pipe_dict["language"] != language:
        gr.Warning(f"Language has changed - loading new default model: {default_model_per_language[language]}")
        pipe_dict["language"] = language
        pipe_dict["original_pipe"] = pipeline("text-to-speech", model=default_model_per_language[language], device=device)
    
    if pipe_dict["current_model"] != model_id:
        gr.Warning("Model has changed - loading new model")
        pipe_dict["pipe"] = pipeline("text-to-speech", model=model_id, device=device)
        pipe_dict["current_model"] = model_id

    num_speakers = pipe_dict["pipe"].model.config.num_speakers

    out = []
    # first generate original model result
    output = pipe_dict["original_pipe"](text)
    output =  gr.Audio(value = (output["sampling_rate"], output["audio"].squeeze()), type="numpy", autoplay=False, label=f"Non finetuned model prediction {default_model_per_language[language]}", show_label=True,
                               visible=True)
    out.append(output)
    
    
    if num_speakers>1:
        for i in range(min(num_speakers, max_speakers - 1)):
            forward_params = {"speaker_id": i}
            output = pipe_dict["pipe"](text, forward_params=forward_params)
            
            output =  gr.Audio(value = (output["sampling_rate"], output["audio"].squeeze()), type="numpy", autoplay=False, label=f"Generated Audio - speaker {i}", show_label=True,
                               visible=True)
            out.append(output)
        out.extend([gr.Audio(visible=False)]*(max_speakers-num_speakers))
    else:
        output = pipe_dict["pipe"](text)
        output =  gr.Audio(value = (output["sampling_rate"], output["audio"].squeeze()), type="numpy", autoplay=False, label="Generated Audio - Mono speaker", show_label=True,
                               visible=True)
        out.append(output)
        out.extend([gr.Audio(visible=False)]*(max_speakers-2))
    return out


css = """
#container{
    margin: 0 auto;
    max-width: 80rem;
}
#intro{
    max-width: 100%;
    text-align: center;
    margin: 0 auto;
}
"""
# Gradio blocks demo    
with gr.Blocks(css=css) as demo_blocks:
    gr.Markdown(title, elem_id="intro")

    with gr.Row():
        with gr.Column():
            inp_text = gr.Textbox(label="Input Text", info="What sentence would you like to synthesise?")
            btn = gr.Button("Generate Audio!")
            language = gr.Dropdown(
                default_model_per_language.keys(),
                value = "spanish",
                label = "language",
                info = "Language that you want to test"
            )
            
            model_id = gr.Dropdown(
                    models_per_language["spanish"],
                    value="ylacombe/mms-spa-finetuned-chilean-monospeaker", 
                    label="Model", 
                    info="Model you want to test",
                    )
                
        with gr.Column():
            outputs = []
            for i in range(max_speakers):
                out_audio = gr.Audio(type="numpy", autoplay=False, label=f"Generated Audio - speaker {i}", show_label=True, visible=False)
                outputs.append(out_audio)

    with gr.Accordion("Datasets and models details", open=False):
        gr.Markdown("""
        
For each language, we used 100 to 150 samples of a single speaker to finetune the model.

### Spanish

* **Model**: [Spanish MMS TTS](https://huggingface.co/facebook/mms-tts-spa).
* **Datasets**:
    - [Chilean Spanish TTS dataset](https://huggingface.co/datasets/ylacombe/google-chilean-spanish).

### English

* **Model**: [VITS-ljs](https://huggingface.co/kakao-enterprise/vits-ljs)
* **Dataset**: [British Isles Accent](https://huggingface.co/datasets/ylacombe/english_dialects). For each accent, we used 100 to 150 samples of a single speaker to finetune [VITS-ljs](https://huggingface.co/kakao-enterprise/vits-ljs).

                    
                    """) 

    with gr.Accordion("Run VITS and MMS with transformers", open=False):
        gr.Markdown(
            """
        ```bash
        pip install transformers
        ```
        ```py
        from transformers import pipeline
        import scipy
        pipe = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs", device=0)
        
        results = pipe("A cinematic shot of a baby racoon wearing an intricate italian priest robe")

        # write to a wav file
        scipy.io.wavfile.write("audio_vits.wav", rate=results["sampling_rate"], data=results["audio"].squeeze())
        ```
        """
        )


    language.change(lambda language: gr.Dropdown(
                    models_per_language[language],
                    value=models_per_language[language][0], 
                    label="Model", 
                    info="Model you want to test",
                    ),
                    language,
                    model_id
                   )
    
    btn.click(generate_audio, [inp_text, model_id, language], outputs)
    

demo_blocks.queue().launch(server_name="0.0.0.0", server_port=7860)