Spaces:
Sleeping
Sleeping
File size: 1,111 Bytes
6ae9e35 6072a57 6ae9e35 6072a57 6ae9e35 6072a57 6ae9e35 6072a57 8975915 6ae9e35 606dee0 6ae9e35 606dee0 6ae9e35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import numpy as np
from fastapi import FastAPI
from fastapi.responses import RedirectResponse
from fastrtc import ReplyOnPause, Stream, get_twilio_turn_credentials
from gradio.utils import get_space
def detection(audio: tuple[int, np.ndarray]):
# Implement any iterator that yields audio
# See "LLM Voice Chat" for a more complete example
yield audio
stream = Stream(
handler=ReplyOnPause(detection),
modality="audio",
mode="send-receive",
rtc_configuration=get_twilio_turn_credentials() if get_space() else None,
concurrency_limit=5 if get_space() else None,
time_limit=90 if get_space() else None,
)
app = FastAPI()
stream.mount(app)
@app.get("/")
async def index():
return RedirectResponse(
url="/ui" if not get_space() else "https://fastrtc-echo-audio.hf.space/ui/"
)
if __name__ == "__main__":
import os
if (mode := os.getenv("MODE")) == "UI":
stream.ui.launch(server_port=7860)
elif mode == "PHONE":
stream.fastphone(port=7860)
else:
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
|