File size: 5,029 Bytes
2ef318a
 
 
 
 
 
 
 
 
e9dc61f
2ef318a
 
 
 
 
 
e9dc61f
2ef318a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import cv2

import numpy as np
import streamlit as st
import tensorflow as tf

from utils import _get_retina_bb, _pad_to_square


@st.cache_resource
def load_model(model_file):
    model = tf.keras.models.load_model(model_file, compile=False)
    print(f'Model {model_file} Loaded!')
    return model


@st.cache_resource
def load_gatekeeper():
    validator_model = tf.keras.models.load_model('checkpoints/ResNetV2-EyeQ-QA.tf')
    print('Gatekeeper Model Loaded!')
    return validator_model


def parse_function(image):
    image = tf.image.resize(image, [512, 512])
    image = tf.image.convert_image_dtype(image, tf.float32)
    return image


def main():

    st.title('Retina Segmentation')

    st.sidebar.title('Segmentation Model')
    options = st.sidebar.selectbox('Select Option:', ('Vessels', 'Lesions (BETA)'))
    gatekeeper = st.sidebar.radio("Gatekeeper:", ('Enabled', 'Disabled'))

    gatekeeper_model = load_gatekeeper()

    if options == 'Vessels':

        st.set_option('deprecation.showfileUploaderEncoding', False)
        uploaded_file = st.file_uploader('Choose an image...', type=('png', 'jpg', 'jpeg'))

        model = load_model('checkpoints/DeeplabV3Plus_DRIVE.tf')

        if uploaded_file:
            col1, col2 = st.columns(2)

            # Load Image
            file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
            image = cv2.imdecode(file_bytes, 1)
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

            # Check image
            valid = np.argmax(gatekeeper_model(parse_function(image[None, ...])))
            if valid == 2 and gatekeeper == 'Enabled':
                st.image(image)
                st.info('Image is of poor quality')
                return

            # Localise and center retina image
            x, y, w, h, _ = _get_retina_bb(image)
            image = image[y:y + h, x:x + w, :]
            image = _pad_to_square(image, border=0)
            image = cv2.resize(image, (1024, 1024))

            with col1:
                st.subheader("Uploaded Image")
                st.image(image)

            # Apply CLAHE pre-processing
            clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(16, 16))
            image = cv2.cvtColor(image, cv2.COLOR_RGB2LAB)
            image[:, :, 0] = clahe.apply(image[:, :, 0])
            image = cv2.cvtColor(image, cv2.COLOR_LAB2RGB)
            image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
            image = tf.image.convert_image_dtype(image, tf.float32)

            # Run model on input
            y_pred = model(image[None, ..., None])[0].numpy()

            with col2:
                st.subheader("Predicted Vessel")
                st.image(y_pred)

    elif options == 'Lesions (BETA)':

        st.write('```--- WARNING: This model is highly experimental ---```')

        st.set_option('deprecation.showfileUploaderEncoding', False)
        uploaded_file = st.file_uploader('Choose an image...', type=('png', 'jpg', 'jpeg'))

        model = load_model('checkpoints/DeeplabV3Plus_FGADR.tf')

        if uploaded_file:
            col1, col2, col3, = st.columns(3)

            # Load Image
            file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
            image = cv2.imdecode(file_bytes, 1)
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

            # Check image
            valid = np.argmax(gatekeeper_model(parse_function(image[None, ...])))
            if valid == 2 and gatekeeper == 'Enabled':
                st.image(image)
                st.info('Image is of poor quality')
                return

            # Localise and center retina image
            x, y, w, h, _ = _get_retina_bb(image)
            image = image[y:y + h, x:x + w, :]
            image = _pad_to_square(image, border=0)
            image = cv2.resize(image, (1024, 1024))

            with col1:
                st.subheader("Uploaded Image")
                st.image(image)

            # Apply CLAHE pre-processing
            clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(16, 16))
            image = cv2.cvtColor(image, cv2.COLOR_RGB2LAB)
            image[:, :, 0] = clahe.apply(image[:, :, 0])
            image = cv2.cvtColor(image, cv2.COLOR_LAB2RGB)
            image = tf.image.convert_image_dtype(image, tf.float32)

            # Run model on input
            y_pred = model(image[None, ..., None])[0].numpy()

            with col2:
                st.subheader(f'MA')
                st.image(y_pred[..., 1])
            with col3:
                st.subheader(f'HE')
                st.image(y_pred[..., 2])
            with col1:
                st.subheader(f'EX')
                st.image(y_pred[..., 3])
            with col2:
                st.subheader(f'SE')
                st.image(y_pred[..., 4])
            with col3:
                st.subheader(f'OD')
                st.image(y_pred[..., 5])

if __name__ == '__main__':

    tf.config.set_visible_devices([], 'GPU')

    main()