File size: 3,373 Bytes
3a6e581
 
 
 
 
914e017
3a6e581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7e823e
 
 
 
ab36d8b
f7e823e
3a6e581
 
 
 
8a98a4e
3a6e581
 
 
 
 
 
 
9ae79ce
3a6e581
d14e682
 
9ae79ce
d14e682
3a6e581
d14e682
3a6e581
 
 
 
 
 
 
 
 
 
 
 
14f6a65
 
3a6e581
 
 
 
 
ab36d8b
 
 
 
 
 
b7c480a
ab36d8b
 
 
 
 
 
 
3a6e581
 
14db151
 
 
 
 
3a6e581
3e712b8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import streamlit as st

def introduction():

    # --- Sidebar ---
    st.sidebar.image("src/Amazon.png", use_container_width=True)
    st.sidebar.title("SalesBoost")
    st.sidebar.markdown("""
    **Team Members**
    - πŸ‘©β€πŸ”¬ Avisa Rahma Benedicta (Data Scientist)
    - πŸ‘¨β€πŸ’» Muhammad Farhan Hendriyanto (Data Engineer)
    - πŸ‘©β€πŸ”¬ Neila Ismahunnisa (Data Analyst)
    - πŸ‘©β€πŸ”¬ Sesilia Virdha Kezia (Data Scientist)            
    """)
    st.sidebar.markdown("""
    **Batch HCK-027** """)

    # --- Main Content ---
    st.title("πŸš€ SalesBoost Dashboard")
    st.markdown("""
    SalesBoost is a project aimed at increasing sales by addressing a declining trend through accurate forecasting.
    It combines **customer behavior clustering** to uncover actionable segments for more effective promotions.

    This app delivers two key features:
    - πŸ“ˆ **Sales Forecast Deployment**
    - πŸ‘₯ **Interactive Customer Dashboard**
    """)

    st.write("---")
    
    # --- Team ---
    st.title("Let's Meet Our Team")
    st.image("src/Team.jpg", use_container_width=True)

    st.write("---")

    # --- Sales Forecast Section ---
    st.header("πŸ“ˆ Predict Sales for the Next N Days")
    st.markdown("Slide the slider day and input quantity variables to generate sales forecasts.")

    st.write("---")

    # --- Customer Segmentation Section ---
    st.header("πŸ‘₯ Interactive Customer Clustering Dashboard")
    st.markdown("Explore customer behavior and segment patterns through clustering.")

    st.image("src/SalesBoost Overview Dashboard.png", caption="SalesBosst Overview Dashboard", use_container_width=True)

    st.write("---")

    st.image("src/SalesBoost Clustering.png", caption="SalesBosst After Clustering Dashboard", use_container_width=True)
    
    # Tombol untuk membuka Tableau
    tableau_url = "https://public.tableau.com/app/profile/muhammad.farhan.hendriyanto/viz/finalproject_17503214545810/DashboardSalesBoostAfterClustering?publish=yes"
    st.markdown(f"[πŸ”— Click here to open the dashboard in a new tab]({tableau_url})")

    st.info("Note: Due to Tableau Public's restrictions, this dashboard cannot be displayed directly in Streamlit.")
    st.write("---")

    # --- About Section ---
    st.header("ℹ️ About SalesBoost")
    st.markdown("""
    **Objective:**
    - Reverse the declining sales trend using intelligent forecasting and segmentation.

    **Methodology:**
    - Time Series Forecasting (SARIMAX)
    - Customer Clustering (K-Prototypes)
    - Dashboarding using Streamlit & Tableau

    **Deliverables:**
    - Forecast Deployment Page
    - Customer Segmentation Dashboard

    **Our Social Media:**
    - Instagram: 
        - @farhend_27 
        - @neilaism
        - @sesiliakezia
        - @avisarahmab_
        - @Rachman
    - Linkedin:
        - https://www.linkedin.com/in/muhammad-farhan-hendriyanto-48a0a320b/
        - https://www.linkedin.com/in/neila-ismahunnisa/
        - https://www.linkedin.com/in/sesilia-virdha-kezia-5922a736b/
        - https://www.linkedin.com/in/avisa-rahma-benedicta-7b354a200/
        - https://www.linkedin.com/in/rachman/
    ---
    """)

    st.markdown("---")
    st.markdown("### πŸ™ Ikan hiu makan tomat \
                \
                Thank you for exploring with us! πŸ™")
if __name__ == "__main__":
    introduction()