Spaces:
Build error
Build error
File size: 1,403 Bytes
b418020 b4aa23e b418020 b78b8e7 b418020 0f51357 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
from transformers import AutoProcessor, AutoModelForCausalLM
import gradio as gr
import torch
model = AutoModelForCausalLM.from_pretrained("./")
processor = AutoProcessor.from_pretrained("microsoft/git-base")
def predict(image):
try:
# Prepare the image using the processor
inputs = processor(images=image, return_tensors="pt")
# Move inputs to the appropriate device
device = "cuda" if torch.cuda.is_available() else "cpu"
inputs = {key: value.to(device) for key, value in inputs.items()}
model.to(device)
# Generate the caption
outputs = model.generate(**inputs)
# Decode the generated caption
caption = processor.batch_decode(outputs, skip_special_tokens=True)[0]
return caption
except Exception as e:
print("Error during prediction:", str(e))
return "Error: " + str(e)
# https://www.gradio.app/guides
with gr.Blocks() as demo:
image = gr.Image(type="pil")
predict_btn = gr.Button("Predict", variant="primary")
output = gr.Label(label="Generated Caption")
inputs = [image]
outputs = [output]
predict_btn.click(predict, inputs=inputs, outputs=outputs)
if __name__ == "__main__":
demo.launch() # Local machine only
# demo.launch(server_name="0.0.0.0") # LAN access to local machine
# demo.launch(share=True) # Public access to local machine |