File size: 32,318 Bytes
b23e3af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
import torch
from torch import nn as nn
from torch.nn import functional as F
import os, sys
import numpy as np

root_path = os.path.abspath('.')
sys.path.append(root_path)


class SEBlock(nn.Module):
    def __init__(self, in_channels, reduction=8, bias=False):
        super(SEBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, in_channels // reduction, 1, 1, 0, bias=bias)
        self.conv2 = nn.Conv2d(in_channels // reduction, in_channels, 1, 1, 0, bias=bias)

    def forward(self, x):
        if ("Half" in x.type()):  # torch.HalfTensor/torch.cuda.HalfTensor
            x0 = torch.mean(x.float(), dim=(2, 3), keepdim=True).half()
        else:
            x0 = torch.mean(x, dim=(2, 3), keepdim=True)
        x0 = self.conv1(x0)
        x0 = F.relu(x0, inplace=True)
        x0 = self.conv2(x0)
        x0 = torch.sigmoid(x0)
        x = torch.mul(x, x0)
        return x

    def forward_mean(self, x, x0):
        x0 = self.conv1(x0)
        x0 = F.relu(x0, inplace=True)
        x0 = self.conv2(x0)
        x0 = torch.sigmoid(x0)
        x = torch.mul(x, x0)
        return x


class UNetConv(nn.Module):
    def __init__(self, in_channels, mid_channels, out_channels, se):
        super(UNetConv, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(in_channels, mid_channels, 3, 1, 0),
            nn.LeakyReLU(0.1, inplace=True),
            nn.Conv2d(mid_channels, out_channels, 3, 1, 0),
            nn.LeakyReLU(0.1, inplace=True),
        )
        if se:
            self.seblock = SEBlock(out_channels, reduction=8, bias=True)
        else:
            self.seblock = None

    def forward(self, x):
        z = self.conv(x)
        if self.seblock is not None:
            z = self.seblock(z)
        return z


class UNet1(nn.Module):
    def __init__(self, in_channels, out_channels, deconv):
        super(UNet1, self).__init__()
        self.conv1 = UNetConv(in_channels, 32, 64, se=False)
        self.conv1_down = nn.Conv2d(64, 64, 2, 2, 0)
        self.conv2 = UNetConv(64, 128, 64, se=True)
        self.conv2_up = nn.ConvTranspose2d(64, 64, 2, 2, 0)
        self.conv3 = nn.Conv2d(64, 64, 3, 1, 0)

        if deconv:
            self.conv_bottom = nn.ConvTranspose2d(64, out_channels, 4, 2, 3)
        else:
            self.conv_bottom = nn.Conv2d(64, out_channels, 3, 1, 0)

        for m in self.modules():
            if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)

    def forward(self, x):
        x1 = self.conv1(x)
        x2 = self.conv1_down(x1)
        x2 = F.leaky_relu(x2, 0.1, inplace=True)
        x2 = self.conv2(x2)
        x2 = self.conv2_up(x2)
        x2 = F.leaky_relu(x2, 0.1, inplace=True)

        x1 = F.pad(x1, (-4, -4, -4, -4))
        x3 = self.conv3(x1 + x2)
        x3 = F.leaky_relu(x3, 0.1, inplace=True)
        z = self.conv_bottom(x3)
        return z

    def forward_a(self, x):
        x1 = self.conv1(x)
        x2 = self.conv1_down(x1)
        x2 = F.leaky_relu(x2, 0.1, inplace=True)
        x2 = self.conv2.conv(x2)
        return x1, x2

    def forward_b(self, x1, x2):
        x2 = self.conv2_up(x2)
        x2 = F.leaky_relu(x2, 0.1, inplace=True)

        x1 = F.pad(x1, (-4, -4, -4, -4))
        x3 = self.conv3(x1 + x2)
        x3 = F.leaky_relu(x3, 0.1, inplace=True)
        z = self.conv_bottom(x3)
        return z


class UNet1x3(nn.Module):
    def __init__(self, in_channels, out_channels, deconv):
        super(UNet1x3, self).__init__()
        self.conv1 = UNetConv(in_channels, 32, 64, se=False)
        self.conv1_down = nn.Conv2d(64, 64, 2, 2, 0)
        self.conv2 = UNetConv(64, 128, 64, se=True)
        self.conv2_up = nn.ConvTranspose2d(64, 64, 2, 2, 0)
        self.conv3 = nn.Conv2d(64, 64, 3, 1, 0)

        if deconv:
            self.conv_bottom = nn.ConvTranspose2d(64, out_channels, 5, 3, 2)
        else:
            self.conv_bottom = nn.Conv2d(64, out_channels, 3, 1, 0)

        for m in self.modules():
            if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)

    def forward(self, x):
        x1 = self.conv1(x)
        x2 = self.conv1_down(x1)
        x2 = F.leaky_relu(x2, 0.1, inplace=True)
        x2 = self.conv2(x2)
        x2 = self.conv2_up(x2)
        x2 = F.leaky_relu(x2, 0.1, inplace=True)

        x1 = F.pad(x1, (-4, -4, -4, -4))
        x3 = self.conv3(x1 + x2)
        x3 = F.leaky_relu(x3, 0.1, inplace=True)
        z = self.conv_bottom(x3)
        return z

    def forward_a(self, x):
        x1 = self.conv1(x)
        x2 = self.conv1_down(x1)
        x2 = F.leaky_relu(x2, 0.1, inplace=True)
        x2 = self.conv2.conv(x2)
        return x1, x2

    def forward_b(self, x1, x2):
        x2 = self.conv2_up(x2)
        x2 = F.leaky_relu(x2, 0.1, inplace=True)

        x1 = F.pad(x1, (-4, -4, -4, -4))
        x3 = self.conv3(x1 + x2)
        x3 = F.leaky_relu(x3, 0.1, inplace=True)
        z = self.conv_bottom(x3)
        return z


class UNet2(nn.Module):
    def __init__(self, in_channels, out_channels, deconv):
        super(UNet2, self).__init__()

        self.conv1 = UNetConv(in_channels, 32, 64, se=False)
        self.conv1_down = nn.Conv2d(64, 64, 2, 2, 0)
        self.conv2 = UNetConv(64, 64, 128, se=True)
        self.conv2_down = nn.Conv2d(128, 128, 2, 2, 0)
        self.conv3 = UNetConv(128, 256, 128, se=True)
        self.conv3_up = nn.ConvTranspose2d(128, 128, 2, 2, 0)
        self.conv4 = UNetConv(128, 64, 64, se=True)
        self.conv4_up = nn.ConvTranspose2d(64, 64, 2, 2, 0)
        self.conv5 = nn.Conv2d(64, 64, 3, 1, 0)

        if deconv:
            self.conv_bottom = nn.ConvTranspose2d(64, out_channels, 4, 2, 3)
        else:
            self.conv_bottom = nn.Conv2d(64, out_channels, 3, 1, 0)

        for m in self.modules():
            if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)

    def forward(self, x):
        x1 = self.conv1(x)
        x2 = self.conv1_down(x1)
        x2 = F.leaky_relu(x2, 0.1, inplace=True)
        x2 = self.conv2(x2)

        x3 = self.conv2_down(x2)
        x3 = F.leaky_relu(x3, 0.1, inplace=True)
        x3 = self.conv3(x3)
        x3 = self.conv3_up(x3)
        x3 = F.leaky_relu(x3, 0.1, inplace=True)

        x2 = F.pad(x2, (-4, -4, -4, -4))
        x4 = self.conv4(x2 + x3)
        x4 = self.conv4_up(x4)
        x4 = F.leaky_relu(x4, 0.1, inplace=True)

        x1 = F.pad(x1, (-16, -16, -16, -16))
        x5 = self.conv5(x1 + x4)
        x5 = F.leaky_relu(x5, 0.1, inplace=True)

        z = self.conv_bottom(x5)
        return z

    def forward_a(self, x):  # conv234结尾有se
        x1 = self.conv1(x)
        x2 = self.conv1_down(x1)
        x2 = F.leaky_relu(x2, 0.1, inplace=True)
        x2 = self.conv2.conv(x2)
        return x1, x2

    def forward_b(self, x2):  # conv234结尾有se
        x3 = self.conv2_down(x2)
        x3 = F.leaky_relu(x3, 0.1, inplace=True)
        x3 = self.conv3.conv(x3)
        return x3

    def forward_c(self, x2, x3):  # conv234结尾有se
        x3 = self.conv3_up(x3)
        x3 = F.leaky_relu(x3, 0.1, inplace=True)

        x2 = F.pad(x2, (-4, -4, -4, -4))
        x4 = self.conv4.conv(x2 + x3)
        return x4

    def forward_d(self, x1, x4):  # conv234结尾有se
        x4 = self.conv4_up(x4)
        x4 = F.leaky_relu(x4, 0.1, inplace=True)

        x1 = F.pad(x1, (-16, -16, -16, -16))
        x5 = self.conv5(x1 + x4)
        x5 = F.leaky_relu(x5, 0.1, inplace=True)

        z = self.conv_bottom(x5)
        return z


class UpCunet2x(nn.Module):  # 完美tile,全程无损
    def __init__(self, in_channels=3, out_channels=3):
        super(UpCunet2x, self).__init__()
        self.unet1 = UNet1(in_channels, out_channels, deconv=True)
        self.unet2 = UNet2(in_channels, out_channels, deconv=False)

    def forward(self, x, tile_mode):  # 1.7G
        n, c, h0, w0 = x.shape
        if (tile_mode == 0):  # 不tile
            ph = ((h0 - 1) // 2 + 1) * 2
            pw = ((w0 - 1) // 2 + 1) * 2
            x = F.pad(x, (18, 18 + pw - w0, 18, 18 + ph - h0), 'reflect')  # 需要保证被2整除
            x = self.unet1.forward(x)
            x0 = self.unet2.forward(x)
            x1 = F.pad(x, (-20, -20, -20, -20))
            x = torch.add(x0, x1)
            if (w0 != pw or h0 != ph): x = x[:, :, :h0 * 2, :w0 * 2]
            return x
        elif (tile_mode == 1):  # 对长边减半
            if (w0 >= h0):
                crop_size_w = ((w0 - 1) // 4 * 4 + 4) // 2  # 减半后能被2整除,所以要先被4整除
                crop_size_h = (h0 - 1) // 2 * 2 + 2  # 能被2整除
            else:
                crop_size_h = ((h0 - 1) // 4 * 4 + 4) // 2  # 减半后能被2整除,所以要先被4整除
                crop_size_w = (w0 - 1) // 2 * 2 + 2  # 能被2整除
            crop_size = (crop_size_h, crop_size_w)  # 6.6G
        elif (tile_mode == 2):  # hw都减半
            crop_size = (((h0 - 1) // 4 * 4 + 4) // 2, ((w0 - 1) // 4 * 4 + 4) // 2)  # 5.6G
        elif (tile_mode == 3):  # hw都三分之一
            crop_size = (((h0 - 1) // 6 * 6 + 6) // 3, ((w0 - 1) // 6 * 6 + 6) // 3)  # 4.2G
        elif (tile_mode == 4):  # hw都四分之一
            crop_size = (((h0 - 1) // 8 * 8 + 8) // 4, ((w0 - 1) // 8 * 8 + 8) // 4)  # 3.7G
        ph = ((h0 - 1) // crop_size[0] + 1) * crop_size[0]
        pw = ((w0 - 1) // crop_size[1] + 1) * crop_size[1]
        x = F.pad(x, (18, 18 + pw - w0, 18, 18 + ph - h0), 'reflect')
        n, c, h, w = x.shape
        se_mean0 = torch.zeros((n, 64, 1, 1)).to(x.device)
        if ("Half" in x.type()):
            se_mean0 = se_mean0.half()
        n_patch = 0
        tmp_dict = {}
        opt_res_dict = {}
        for i in range(0, h - 36, crop_size[0]):
            tmp_dict[i] = {}
            for j in range(0, w - 36, crop_size[1]):
                x_crop = x[:, :, i:i + crop_size[0] + 36, j:j + crop_size[1] + 36]
                n, c1, h1, w1 = x_crop.shape
                tmp0, x_crop = self.unet1.forward_a(x_crop)
                if ("Half" in x.type()):  # torch.HalfTensor/torch.cuda.HalfTensor
                    tmp_se_mean = torch.mean(x_crop.float(), dim=(2, 3), keepdim=True).half()
                else:
                    tmp_se_mean = torch.mean(x_crop, dim=(2, 3), keepdim=True)
                se_mean0 += tmp_se_mean
                n_patch += 1
                tmp_dict[i][j] = (tmp0, x_crop)
        se_mean0 /= n_patch
        se_mean1 = torch.zeros((n, 128, 1, 1)).to(x.device)  # 64#128#128#64
        if ("Half" in x.type()):
            se_mean1 = se_mean1.half()
        for i in range(0, h - 36, crop_size[0]):
            for j in range(0, w - 36, crop_size[1]):
                tmp0, x_crop = tmp_dict[i][j]
                x_crop = self.unet1.conv2.seblock.forward_mean(x_crop, se_mean0)
                opt_unet1 = self.unet1.forward_b(tmp0, x_crop)
                tmp_x1, tmp_x2 = self.unet2.forward_a(opt_unet1)
                if ("Half" in x.type()):  # torch.HalfTensor/torch.cuda.HalfTensor
                    tmp_se_mean = torch.mean(tmp_x2.float(), dim=(2, 3), keepdim=True).half()
                else:
                    tmp_se_mean = torch.mean(tmp_x2, dim=(2, 3), keepdim=True)
                se_mean1 += tmp_se_mean
                tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x2)
        se_mean1 /= n_patch
        se_mean0 = torch.zeros((n, 128, 1, 1)).to(x.device)  # 64#128#128#64
        if ("Half" in x.type()):
            se_mean0 = se_mean0.half()
        for i in range(0, h - 36, crop_size[0]):
            for j in range(0, w - 36, crop_size[1]):
                opt_unet1, tmp_x1, tmp_x2 = tmp_dict[i][j]
                tmp_x2 = self.unet2.conv2.seblock.forward_mean(tmp_x2, se_mean1)
                tmp_x3 = self.unet2.forward_b(tmp_x2)
                if ("Half" in x.type()):  # torch.HalfTensor/torch.cuda.HalfTensor
                    tmp_se_mean = torch.mean(tmp_x3.float(), dim=(2, 3), keepdim=True).half()
                else:
                    tmp_se_mean = torch.mean(tmp_x3, dim=(2, 3), keepdim=True)
                se_mean0 += tmp_se_mean
                tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x2, tmp_x3)
        se_mean0 /= n_patch
        se_mean1 = torch.zeros((n, 64, 1, 1)).to(x.device)  # 64#128#128#64
        if ("Half" in x.type()):
            se_mean1 = se_mean1.half()
        for i in range(0, h - 36, crop_size[0]):
            for j in range(0, w - 36, crop_size[1]):
                opt_unet1, tmp_x1, tmp_x2, tmp_x3 = tmp_dict[i][j]
                tmp_x3 = self.unet2.conv3.seblock.forward_mean(tmp_x3, se_mean0)
                tmp_x4 = self.unet2.forward_c(tmp_x2, tmp_x3)
                if ("Half" in x.type()):  # torch.HalfTensor/torch.cuda.HalfTensor
                    tmp_se_mean = torch.mean(tmp_x4.float(), dim=(2, 3), keepdim=True).half()
                else:
                    tmp_se_mean = torch.mean(tmp_x4, dim=(2, 3), keepdim=True)
                se_mean1 += tmp_se_mean
                tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x4)
        se_mean1 /= n_patch
        for i in range(0, h - 36, crop_size[0]):
            opt_res_dict[i] = {}
            for j in range(0, w - 36, crop_size[1]):
                opt_unet1, tmp_x1, tmp_x4 = tmp_dict[i][j]
                tmp_x4 = self.unet2.conv4.seblock.forward_mean(tmp_x4, se_mean1)
                x0 = self.unet2.forward_d(tmp_x1, tmp_x4)
                x1 = F.pad(opt_unet1, (-20, -20, -20, -20))
                x_crop = torch.add(x0, x1)  # x0是unet2的最终输出
                opt_res_dict[i][j] = x_crop
        del tmp_dict
        torch.cuda.empty_cache()
        res = torch.zeros((n, c, h * 2 - 72, w * 2 - 72)).to(x.device)
        if ("Half" in x.type()):
            res = res.half()
        for i in range(0, h - 36, crop_size[0]):
            for j in range(0, w - 36, crop_size[1]):
                res[:, :, i * 2:i * 2 + h1 * 2 - 72, j * 2:j * 2 + w1 * 2 - 72] = opt_res_dict[i][j]
        del opt_res_dict
        torch.cuda.empty_cache()
        if (w0 != pw or h0 != ph): res = res[:, :, :h0 * 2, :w0 * 2]
        return res  #


class UpCunet3x(nn.Module):  # 完美tile,全程无损
    def __init__(self, in_channels=3, out_channels=3):
        super(UpCunet3x, self).__init__()
        self.unet1 = UNet1x3(in_channels, out_channels, deconv=True)
        self.unet2 = UNet2(in_channels, out_channels, deconv=False)

    def forward(self, x, tile_mode):  # 1.7G
        n, c, h0, w0 = x.shape
        if (tile_mode == 0):  # 不tile
            ph = ((h0 - 1) // 4 + 1) * 4
            pw = ((w0 - 1) // 4 + 1) * 4
            x = F.pad(x, (14, 14 + pw - w0, 14, 14 + ph - h0), 'reflect')  # 需要保证被2整除
            x = self.unet1.forward(x)
            x0 = self.unet2.forward(x)
            x1 = F.pad(x, (-20, -20, -20, -20))
            x = torch.add(x0, x1)
            if (w0 != pw or h0 != ph): x = x[:, :, :h0 * 3, :w0 * 3]
            return x
        elif (tile_mode == 1):  # 对长边减半
            if (w0 >= h0):
                crop_size_w = ((w0 - 1) // 8 * 8 + 8) // 2  # 减半后能被4整除,所以要先被8整除
                crop_size_h = (h0 - 1) // 4 * 4 + 4  # 能被4整除
            else:
                crop_size_h = ((h0 - 1) // 8 * 8 + 8) // 2  # 减半后能被4整除,所以要先被8整除
                crop_size_w = (w0 - 1) // 4 * 4 + 4  # 能被4整除
            crop_size = (crop_size_h, crop_size_w)  # 6.6G
        elif (tile_mode == 2):  # hw都减半
            crop_size = (((h0 - 1) // 8 * 8 + 8) // 2, ((w0 - 1) // 8 * 8 + 8) // 2)  # 5.6G
        elif (tile_mode == 3):  # hw都三分之一
            crop_size = (((h0 - 1) // 12 * 12 + 12) // 3, ((w0 - 1) // 12 * 12 + 12) // 3)  # 4.2G
        elif (tile_mode == 4):  # hw都四分之一
            crop_size = (((h0 - 1) // 16 * 16 + 16) // 4, ((w0 - 1) // 16 * 16 + 16) // 4)  # 3.7G
        ph = ((h0 - 1) // crop_size[0] + 1) * crop_size[0]
        pw = ((w0 - 1) // crop_size[1] + 1) * crop_size[1]
        x = F.pad(x, (14, 14 + pw - w0, 14, 14 + ph - h0), 'reflect')
        n, c, h, w = x.shape
        se_mean0 = torch.zeros((n, 64, 1, 1)).to(x.device)
        if ("Half" in x.type()):
            se_mean0 = se_mean0.half()
        n_patch = 0
        tmp_dict = {}
        opt_res_dict = {}
        for i in range(0, h - 28, crop_size[0]):
            tmp_dict[i] = {}
            for j in range(0, w - 28, crop_size[1]):
                x_crop = x[:, :, i:i + crop_size[0] + 28, j:j + crop_size[1] + 28]
                n, c1, h1, w1 = x_crop.shape
                tmp0, x_crop = self.unet1.forward_a(x_crop)
                if ("Half" in x.type()):  # torch.HalfTensor/torch.cuda.HalfTensor
                    tmp_se_mean = torch.mean(x_crop.float(), dim=(2, 3), keepdim=True).half()
                else:
                    tmp_se_mean = torch.mean(x_crop, dim=(2, 3), keepdim=True)
                se_mean0 += tmp_se_mean
                n_patch += 1
                tmp_dict[i][j] = (tmp0, x_crop)
        se_mean0 /= n_patch
        se_mean1 = torch.zeros((n, 128, 1, 1)).to(x.device)  # 64#128#128#64
        if ("Half" in x.type()):
            se_mean1 = se_mean1.half()
        for i in range(0, h - 28, crop_size[0]):
            for j in range(0, w - 28, crop_size[1]):
                tmp0, x_crop = tmp_dict[i][j]
                x_crop = self.unet1.conv2.seblock.forward_mean(x_crop, se_mean0)
                opt_unet1 = self.unet1.forward_b(tmp0, x_crop)
                tmp_x1, tmp_x2 = self.unet2.forward_a(opt_unet1)
                if ("Half" in x.type()):  # torch.HalfTensor/torch.cuda.HalfTensor
                    tmp_se_mean = torch.mean(tmp_x2.float(), dim=(2, 3), keepdim=True).half()
                else:
                    tmp_se_mean = torch.mean(tmp_x2, dim=(2, 3), keepdim=True)
                se_mean1 += tmp_se_mean
                tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x2)
        se_mean1 /= n_patch
        se_mean0 = torch.zeros((n, 128, 1, 1)).to(x.device)  # 64#128#128#64
        if ("Half" in x.type()):
            se_mean0 = se_mean0.half()
        for i in range(0, h - 28, crop_size[0]):
            for j in range(0, w - 28, crop_size[1]):
                opt_unet1, tmp_x1, tmp_x2 = tmp_dict[i][j]
                tmp_x2 = self.unet2.conv2.seblock.forward_mean(tmp_x2, se_mean1)
                tmp_x3 = self.unet2.forward_b(tmp_x2)
                if ("Half" in x.type()):  # torch.HalfTensor/torch.cuda.HalfTensor
                    tmp_se_mean = torch.mean(tmp_x3.float(), dim=(2, 3), keepdim=True).half()
                else:
                    tmp_se_mean = torch.mean(tmp_x3, dim=(2, 3), keepdim=True)
                se_mean0 += tmp_se_mean
                tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x2, tmp_x3)
        se_mean0 /= n_patch
        se_mean1 = torch.zeros((n, 64, 1, 1)).to(x.device)  # 64#128#128#64
        if ("Half" in x.type()):
            se_mean1 = se_mean1.half()
        for i in range(0, h - 28, crop_size[0]):
            for j in range(0, w - 28, crop_size[1]):
                opt_unet1, tmp_x1, tmp_x2, tmp_x3 = tmp_dict[i][j]
                tmp_x3 = self.unet2.conv3.seblock.forward_mean(tmp_x3, se_mean0)
                tmp_x4 = self.unet2.forward_c(tmp_x2, tmp_x3)
                if ("Half" in x.type()):  # torch.HalfTensor/torch.cuda.HalfTensor
                    tmp_se_mean = torch.mean(tmp_x4.float(), dim=(2, 3), keepdim=True).half()
                else:
                    tmp_se_mean = torch.mean(tmp_x4, dim=(2, 3), keepdim=True)
                se_mean1 += tmp_se_mean
                tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x4)
        se_mean1 /= n_patch
        for i in range(0, h - 28, crop_size[0]):
            opt_res_dict[i] = {}
            for j in range(0, w - 28, crop_size[1]):
                opt_unet1, tmp_x1, tmp_x4 = tmp_dict[i][j]
                tmp_x4 = self.unet2.conv4.seblock.forward_mean(tmp_x4, se_mean1)
                x0 = self.unet2.forward_d(tmp_x1, tmp_x4)
                x1 = F.pad(opt_unet1, (-20, -20, -20, -20))
                x_crop = torch.add(x0, x1)  # x0是unet2的最终输出
                opt_res_dict[i][j] = x_crop  #
        del tmp_dict
        torch.cuda.empty_cache()
        res = torch.zeros((n, c, h * 3 - 84, w * 3 - 84)).to(x.device)
        if ("Half" in x.type()):
            res = res.half()
        for i in range(0, h - 28, crop_size[0]):
            for j in range(0, w - 28, crop_size[1]):
                res[:, :, i * 3:i * 3 + h1 * 3 - 84, j * 3:j * 3 + w1 * 3 - 84] = opt_res_dict[i][j]
        del opt_res_dict
        torch.cuda.empty_cache()
        if (w0 != pw or h0 != ph): res = res[:, :, :h0 * 3, :w0 * 3]
        return res


class UpCunet4x(nn.Module):  # 完美tile,全程无损
    def __init__(self, in_channels=3, out_channels=3):
        super(UpCunet4x, self).__init__()
        self.unet1 = UNet1(in_channels, 64, deconv=True)
        self.unet2 = UNet2(64, 64, deconv=False)
        self.ps = nn.PixelShuffle(2)
        self.conv_final = nn.Conv2d(64, 12, 3, 1, padding=0, bias=True)

    def forward(self, x, tile_mode):
        n, c, h0, w0 = x.shape
        x00 = x
        if (tile_mode == 0):  # 不tile
            ph = ((h0 - 1) // 2 + 1) * 2
            pw = ((w0 - 1) // 2 + 1) * 2
            x = F.pad(x, (19, 19 + pw - w0, 19, 19 + ph - h0), 'reflect')  # 需要保证被2整除
            x = self.unet1.forward(x)
            x0 = self.unet2.forward(x)
            x1 = F.pad(x, (-20, -20, -20, -20))
            x = torch.add(x0, x1)
            x = self.conv_final(x)
            x = F.pad(x, (-1, -1, -1, -1))
            x = self.ps(x)
            if (w0 != pw or h0 != ph): x = x[:, :, :h0 * 4, :w0 * 4]
            x += F.interpolate(x00, scale_factor=4, mode='nearest')
            return x
        elif (tile_mode == 1):  # 对长边减半
            if (w0 >= h0):
                crop_size_w = ((w0 - 1) // 4 * 4 + 4) // 2  # 减半后能被2整除,所以要先被4整除
                crop_size_h = (h0 - 1) // 2 * 2 + 2  # 能被2整除
            else:
                crop_size_h = ((h0 - 1) // 4 * 4 + 4) // 2  # 减半后能被2整除,所以要先被4整除
                crop_size_w = (w0 - 1) // 2 * 2 + 2  # 能被2整除
            crop_size = (crop_size_h, crop_size_w)  # 6.6G
        elif (tile_mode == 2):  # hw都减半
            crop_size = (((h0 - 1) // 4 * 4 + 4) // 2, ((w0 - 1) // 4 * 4 + 4) // 2)  # 5.6G
        elif (tile_mode == 3):  # hw都三分之一
            crop_size = (((h0 - 1) // 6 * 6 + 6) // 3, ((w0 - 1) // 6 * 6 + 6) // 3)  # 4.1G
        elif (tile_mode == 4):  # hw都四分之一
            crop_size = (((h0 - 1) // 8 * 8 + 8) // 4, ((w0 - 1) // 8 * 8 + 8) // 4)  # 3.7G
        ph = ((h0 - 1) // crop_size[0] + 1) * crop_size[0]
        pw = ((w0 - 1) // crop_size[1] + 1) * crop_size[1]
        x = F.pad(x, (19, 19 + pw - w0, 19, 19 + ph - h0), 'reflect')
        n, c, h, w = x.shape
        se_mean0 = torch.zeros((n, 64, 1, 1)).to(x.device)
        if ("Half" in x.type()):
            se_mean0 = se_mean0.half()
        n_patch = 0
        tmp_dict = {}
        opt_res_dict = {}
        for i in range(0, h - 38, crop_size[0]):
            tmp_dict[i] = {}
            for j in range(0, w - 38, crop_size[1]):
                x_crop = x[:, :, i:i + crop_size[0] + 38, j:j + crop_size[1] + 38]
                n, c1, h1, w1 = x_crop.shape
                tmp0, x_crop = self.unet1.forward_a(x_crop)
                if ("Half" in x.type()):  # torch.HalfTensor/torch.cuda.HalfTensor
                    tmp_se_mean = torch.mean(x_crop.float(), dim=(2, 3), keepdim=True).half()
                else:
                    tmp_se_mean = torch.mean(x_crop, dim=(2, 3), keepdim=True)
                se_mean0 += tmp_se_mean
                n_patch += 1
                tmp_dict[i][j] = (tmp0, x_crop)
        se_mean0 /= n_patch
        se_mean1 = torch.zeros((n, 128, 1, 1)).to(x.device)  # 64#128#128#64
        if ("Half" in x.type()):
            se_mean1 = se_mean1.half()
        for i in range(0, h - 38, crop_size[0]):
            for j in range(0, w - 38, crop_size[1]):
                tmp0, x_crop = tmp_dict[i][j]
                x_crop = self.unet1.conv2.seblock.forward_mean(x_crop, se_mean0)
                opt_unet1 = self.unet1.forward_b(tmp0, x_crop)
                tmp_x1, tmp_x2 = self.unet2.forward_a(opt_unet1)
                if ("Half" in x.type()):  # torch.HalfTensor/torch.cuda.HalfTensor
                    tmp_se_mean = torch.mean(tmp_x2.float(), dim=(2, 3), keepdim=True).half()
                else:
                    tmp_se_mean = torch.mean(tmp_x2, dim=(2, 3), keepdim=True)
                se_mean1 += tmp_se_mean
                tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x2)
        se_mean1 /= n_patch
        se_mean0 = torch.zeros((n, 128, 1, 1)).to(x.device)  # 64#128#128#64
        if ("Half" in x.type()):
            se_mean0 = se_mean0.half()
        for i in range(0, h - 38, crop_size[0]):
            for j in range(0, w - 38, crop_size[1]):
                opt_unet1, tmp_x1, tmp_x2 = tmp_dict[i][j]
                tmp_x2 = self.unet2.conv2.seblock.forward_mean(tmp_x2, se_mean1)
                tmp_x3 = self.unet2.forward_b(tmp_x2)
                if ("Half" in x.type()):  # torch.HalfTensor/torch.cuda.HalfTensor
                    tmp_se_mean = torch.mean(tmp_x3.float(), dim=(2, 3), keepdim=True).half()
                else:
                    tmp_se_mean = torch.mean(tmp_x3, dim=(2, 3), keepdim=True)
                se_mean0 += tmp_se_mean
                tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x2, tmp_x3)
        se_mean0 /= n_patch
        se_mean1 = torch.zeros((n, 64, 1, 1)).to(x.device)  # 64#128#128#64
        if ("Half" in x.type()):
            se_mean1 = se_mean1.half()
        for i in range(0, h - 38, crop_size[0]):
            for j in range(0, w - 38, crop_size[1]):
                opt_unet1, tmp_x1, tmp_x2, tmp_x3 = tmp_dict[i][j]
                tmp_x3 = self.unet2.conv3.seblock.forward_mean(tmp_x3, se_mean0)
                tmp_x4 = self.unet2.forward_c(tmp_x2, tmp_x3)
                if ("Half" in x.type()):  # torch.HalfTensor/torch.cuda.HalfTensor
                    tmp_se_mean = torch.mean(tmp_x4.float(), dim=(2, 3), keepdim=True).half()
                else:
                    tmp_se_mean = torch.mean(tmp_x4, dim=(2, 3), keepdim=True)
                se_mean1 += tmp_se_mean
                tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x4)
        se_mean1 /= n_patch
        for i in range(0, h - 38, crop_size[0]):
            opt_res_dict[i] = {}
            for j in range(0, w - 38, crop_size[1]):
                opt_unet1, tmp_x1, tmp_x4 = tmp_dict[i][j]
                tmp_x4 = self.unet2.conv4.seblock.forward_mean(tmp_x4, se_mean1)
                x0 = self.unet2.forward_d(tmp_x1, tmp_x4)
                x1 = F.pad(opt_unet1, (-20, -20, -20, -20))
                x_crop = torch.add(x0, x1)  # x0是unet2的最终输出
                x_crop = self.conv_final(x_crop)
                x_crop = F.pad(x_crop, (-1, -1, -1, -1))
                x_crop = self.ps(x_crop)
                opt_res_dict[i][j] = x_crop
        del tmp_dict
        torch.cuda.empty_cache()
        res = torch.zeros((n, c, h * 4 - 152, w * 4 - 152)).to(x.device)
        if ("Half" in x.type()):
            res = res.half()
        for i in range(0, h - 38, crop_size[0]):
            for j in range(0, w - 38, crop_size[1]):
                # print(opt_res_dict[i][j].shape,res[:, :, i * 4:i * 4 + h1 * 4 - 144, j * 4:j * 4 + w1 * 4 - 144].shape)
                res[:, :, i * 4:i * 4 + h1 * 4 - 152, j * 4:j * 4 + w1 * 4 - 152] = opt_res_dict[i][j]
        del opt_res_dict
        torch.cuda.empty_cache()
        if (w0 != pw or h0 != ph): res = res[:, :, :h0 * 4, :w0 * 4]
        res += F.interpolate(x00, scale_factor=4, mode='nearest')
        return res  #


class RealWaifuUpScaler(object):
    def __init__(self, scale, weight_path, half, device):
        weight = torch.load(weight_path, map_location="cpu")
        self.model = eval("UpCunet%sx" % scale)()
        if (half == True):
            self.model = self.model.half().to(device)
        else:
            self.model = self.model.to(device)
        self.model.load_state_dict(weight, strict=True)
        self.model.eval()
        self.half = half
        self.device = device

    def np2tensor(self, np_frame):
        if (self.half == False):
            return torch.from_numpy(np.transpose(np_frame, (2, 0, 1))).unsqueeze(0).to(self.device).float() / 255
        else:
            return torch.from_numpy(np.transpose(np_frame, (2, 0, 1))).unsqueeze(0).to(self.device).half() / 255

    def tensor2np(self, tensor):
        if (self.half == False):
            return (
                np.transpose((tensor.data.squeeze() * 255.0).round().clamp_(0, 255).byte().cpu().numpy(), (1, 2, 0)))
        else:
            return (np.transpose((tensor.data.squeeze().float() * 255.0).round().clamp_(0, 255).byte().cpu().numpy(),
                                 (1, 2, 0)))

    def __call__(self, frame, tile_mode):
        with torch.no_grad():
            tensor = self.np2tensor(frame)
            result = self.tensor2np(self.model(tensor, tile_mode))
        return result


if __name__ == "__main__":
    ###########inference_img
    import time, cv2, sys
    from time import time as ttime

    for weight_path, scale in [("weights_v3/up2x-latest-denoise3x.pth", 2), ("weights_v3/up3x-latest-denoise3x.pth", 3),
                               ("weights_v3/up4x-latest-denoise3x.pth", 4)]:
        for tile_mode in [0, 1, 2, 3, 4]:
            upscaler2x = RealWaifuUpScaler(scale, weight_path, half=True, device="cuda:0")
            input_dir = "%s/input_dir1" % root_path
            output_dir = "%s/opt-dir-all-test" % root_path
            os.makedirs(output_dir, exist_ok=True)
            for name in os.listdir(input_dir):
                print(name)
                tmp = name.split(".")
                inp_path = os.path.join(input_dir, name)
                suffix = tmp[-1]
                prefix = ".".join(tmp[:-1])
                tmp_path = os.path.join(root_path, "tmp", "%s.%s" % (int(time.time() * 1000000), suffix))
                print(inp_path, tmp_path)
                # 支持中文路径
                # os.link(inp_path, tmp_path)#win用硬链接
                os.symlink(inp_path, tmp_path)  # linux用软链接
                frame = cv2.imread(tmp_path)[:, :, [2, 1, 0]]
                t0 = ttime()
                result = upscaler2x(frame, tile_mode=tile_mode)[:, :, ::-1]
                t1 = ttime()
                print(prefix, "done", t1 - t0)
                tmp_opt_path = os.path.join(root_path, "tmp", "%s.%s" % (int(time.time() * 1000000), suffix))
                cv2.imwrite(tmp_opt_path, result)
                n = 0
                while (1):
                    if (n == 0):
                        suffix = "_%sx_tile%s.png" % (scale, tile_mode)
                    else:
                        suffix = "_%sx_tile%s_%s.png" % (scale, tile_mode, n)  #
                    if (os.path.exists(os.path.join(output_dir, prefix + suffix)) == False):
                        break
                    else:
                        n += 1
                final_opt_path = os.path.join(output_dir, prefix + suffix)
                os.rename(tmp_opt_path, final_opt_path)
                os.remove(tmp_path)