File size: 2,181 Bytes
404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
import torch
import torch.nn as nn
from .lcnn_hourglass import MultitaskHead, hg
class HourglassBackbone(nn.Module):
"""Hourglass backbone."""
def __init__(
self, input_channel=1, depth=4, num_stacks=2, num_blocks=1, num_classes=5
):
super(HourglassBackbone, self).__init__()
self.head = MultitaskHead
self.net = hg(
**{
"head": self.head,
"depth": depth,
"num_stacks": num_stacks,
"num_blocks": num_blocks,
"num_classes": num_classes,
"input_channels": input_channel,
}
)
def forward(self, input_images):
return self.net(input_images)[1]
class SuperpointBackbone(nn.Module):
"""SuperPoint backbone."""
def __init__(self):
super(SuperpointBackbone, self).__init__()
self.relu = torch.nn.ReLU(inplace=True)
self.pool = torch.nn.MaxPool2d(kernel_size=2, stride=2)
c1, c2, c3, c4 = 64, 64, 128, 128
# Shared Encoder.
self.conv1a = torch.nn.Conv2d(1, c1, kernel_size=3, stride=1, padding=1)
self.conv1b = torch.nn.Conv2d(c1, c1, kernel_size=3, stride=1, padding=1)
self.conv2a = torch.nn.Conv2d(c1, c2, kernel_size=3, stride=1, padding=1)
self.conv2b = torch.nn.Conv2d(c2, c2, kernel_size=3, stride=1, padding=1)
self.conv3a = torch.nn.Conv2d(c2, c3, kernel_size=3, stride=1, padding=1)
self.conv3b = torch.nn.Conv2d(c3, c3, kernel_size=3, stride=1, padding=1)
self.conv4a = torch.nn.Conv2d(c3, c4, kernel_size=3, stride=1, padding=1)
self.conv4b = torch.nn.Conv2d(c4, c4, kernel_size=3, stride=1, padding=1)
def forward(self, input_images):
# Shared Encoder.
x = self.relu(self.conv1a(input_images))
x = self.relu(self.conv1b(x))
x = self.pool(x)
x = self.relu(self.conv2a(x))
x = self.relu(self.conv2b(x))
x = self.pool(x)
x = self.relu(self.conv3a(x))
x = self.relu(self.conv3b(x))
x = self.pool(x)
x = self.relu(self.conv4a(x))
x = self.relu(self.conv4b(x))
return x
|