File size: 5,988 Bytes
404d2af
 
 
 
 
 
 
 
 
 
 
 
 
8b973ee
404d2af
 
 
 
 
 
 
 
 
 
 
 
 
 
8b973ee
404d2af
 
 
 
 
 
 
 
 
8b973ee
404d2af
 
 
 
 
8b973ee
404d2af
 
8b973ee
 
404d2af
 
 
8b973ee
 
404d2af
8b973ee
404d2af
 
8b973ee
 
 
 
 
404d2af
8b973ee
 
 
404d2af
 
 
 
 
 
 
 
 
 
8b973ee
404d2af
 
 
8b973ee
404d2af
 
 
 
 
 
 
 
8b973ee
404d2af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b973ee
404d2af
 
8b973ee
404d2af
 
8b973ee
 
 
 
 
 
 
 
 
 
 
 
404d2af
8b973ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
404d2af
 
 
 
 
8b973ee
 
 
 
 
 
 
 
 
 
 
 
 
404d2af
8b973ee
 
 
 
404d2af
8b973ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
404d2af
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import os
import contextlib
import joblib
from typing import Union
from loguru import _Logger, logger
from itertools import chain

import torch
from yacs.config import CfgNode as CN
from pytorch_lightning.utilities import rank_zero_only
import cv2
import numpy as np


def lower_config(yacs_cfg):
    if not isinstance(yacs_cfg, CN):
        return yacs_cfg
    return {k.lower(): lower_config(v) for k, v in yacs_cfg.items()}


def upper_config(dict_cfg):
    if not isinstance(dict_cfg, dict):
        return dict_cfg
    return {k.upper(): upper_config(v) for k, v in dict_cfg.items()}


def log_on(condition, message, level):
    if condition:
        assert level in ["INFO", "DEBUG", "WARNING", "ERROR", "CRITICAL"]
        logger.log(level, message)


def get_rank_zero_only_logger(logger: _Logger):
    if rank_zero_only.rank == 0:
        return logger
    else:
        for _level in logger._core.levels.keys():
            level = _level.lower()
            setattr(logger, level, lambda x: None)
        logger._log = lambda x: None
    return logger


def setup_gpus(gpus: Union[str, int]) -> int:
    """A temporary fix for pytorch-lighting 1.3.x"""
    gpus = str(gpus)
    gpu_ids = []

    if "," not in gpus:
        n_gpus = int(gpus)
        return n_gpus if n_gpus != -1 else torch.cuda.device_count()
    else:
        gpu_ids = [i.strip() for i in gpus.split(",") if i != ""]

    # setup environment variables
    visible_devices = os.getenv("CUDA_VISIBLE_DEVICES")
    if visible_devices is None:
        os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
        os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(str(i) for i in gpu_ids)
        visible_devices = os.getenv("CUDA_VISIBLE_DEVICES")
        logger.warning(
            f"[Temporary Fix] manually set CUDA_VISIBLE_DEVICES when specifying gpus to use: {visible_devices}"
        )
    else:
        logger.warning(
            "[Temporary Fix] CUDA_VISIBLE_DEVICES already set by user or the main process."
        )
    return len(gpu_ids)


def flattenList(x):
    return list(chain(*x))


@contextlib.contextmanager
def tqdm_joblib(tqdm_object):
    """Context manager to patch joblib to report into tqdm progress bar given as argument

    Usage:
        with tqdm_joblib(tqdm(desc="My calculation", total=10)) as progress_bar:
            Parallel(n_jobs=16)(delayed(sqrt)(i**2) for i in range(10))

    When iterating over a generator, directly use of tqdm is also a solutin (but monitor the task queuing, instead of finishing)
        ret_vals = Parallel(n_jobs=args.world_size)(
                    delayed(lambda x: _compute_cov_score(pid, *x))(param)
                        for param in tqdm(combinations(image_ids, 2),
                                          desc=f'Computing cov_score of [{pid}]',
                                          total=len(image_ids)*(len(image_ids)-1)/2))
    Src: https://stackoverflow.com/a/58936697
    """

    class TqdmBatchCompletionCallback(joblib.parallel.BatchCompletionCallBack):
        def __init__(self, *args, **kwargs):
            super().__init__(*args, **kwargs)

        def __call__(self, *args, **kwargs):
            tqdm_object.update(n=self.batch_size)
            return super().__call__(*args, **kwargs)

    old_batch_callback = joblib.parallel.BatchCompletionCallBack
    joblib.parallel.BatchCompletionCallBack = TqdmBatchCompletionCallback
    try:
        yield tqdm_object
    finally:
        joblib.parallel.BatchCompletionCallBack = old_batch_callback
        tqdm_object.close()


def draw_points(img, points, color=(0, 255, 0), radius=3):
    dp = [(int(points[i, 0]), int(points[i, 1])) for i in range(points.shape[0])]
    for i in range(points.shape[0]):
        cv2.circle(img, dp[i], radius=radius, color=color)
    return img


def draw_match(
    img1,
    img2,
    corr1,
    corr2,
    inlier=[True],
    color=None,
    radius1=1,
    radius2=1,
    resize=None,
):
    if resize is not None:
        scale1, scale2 = [img1.shape[1] / resize[0], img1.shape[0] / resize[1]], [
            img2.shape[1] / resize[0],
            img2.shape[0] / resize[1],
        ]
        img1, img2 = cv2.resize(img1, resize, interpolation=cv2.INTER_AREA), cv2.resize(
            img2, resize, interpolation=cv2.INTER_AREA
        )
        corr1, corr2 = (
            corr1 / np.asarray(scale1)[np.newaxis],
            corr2 / np.asarray(scale2)[np.newaxis],
        )
    corr1_key = [
        cv2.KeyPoint(corr1[i, 0], corr1[i, 1], radius1) for i in range(corr1.shape[0])
    ]
    corr2_key = [
        cv2.KeyPoint(corr2[i, 0], corr2[i, 1], radius2) for i in range(corr2.shape[0])
    ]

    assert len(corr1) == len(corr2)

    draw_matches = [cv2.DMatch(i, i, 0) for i in range(len(corr1))]
    if color is None:
        color = [(0, 255, 0) if cur_inlier else (0, 0, 255) for cur_inlier in inlier]
    if len(color) == 1:
        display = cv2.drawMatches(
            img1,
            corr1_key,
            img2,
            corr2_key,
            draw_matches,
            None,
            matchColor=color[0],
            singlePointColor=color[0],
            flags=4,
        )
    else:
        height, width = max(img1.shape[0], img2.shape[0]), img1.shape[1] + img2.shape[1]
        display = np.zeros([height, width, 3], np.uint8)
        display[: img1.shape[0], : img1.shape[1]] = img1
        display[: img2.shape[0], img1.shape[1] :] = img2
        for i in range(len(corr1)):
            left_x, left_y, right_x, right_y = (
                int(corr1[i][0]),
                int(corr1[i][1]),
                int(corr2[i][0] + img1.shape[1]),
                int(corr2[i][1]),
            )
            cur_color = (int(color[i][0]), int(color[i][1]), int(color[i][2]))
            cv2.line(
                display,
                (left_x, left_y),
                (right_x, right_y),
                cur_color,
                1,
                lineType=cv2.LINE_AA,
            )
    return display