File size: 7,108 Bytes
404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
# Copyright 2019-present NAVER Corp.
# CC BY-NC-SA 3.0
# Available only for non-commercial use
import pdb
import numpy as np
from PIL import Image, ImageOps, ImageEnhance
class DummyImg:
"""This class is a dummy image only defined by its size."""
def __init__(self, size):
self.size = size
def resize(self, size, *args, **kwargs):
return DummyImg(size)
def expand(self, border):
w, h = self.size
if isinstance(border, int):
size = (w + 2 * border, h + 2 * border)
else:
l, t, r, b = border
size = (w + l + r, h + t + b)
return DummyImg(size)
def crop(self, border):
w, h = self.size
l, t, r, b = border
assert 0 <= l <= r <= w
assert 0 <= t <= b <= h
size = (r - l, b - t)
return DummyImg(size)
def rotate(self, angle):
raise NotImplementedError
def transform(self, size, *args, **kwargs):
return DummyImg(size)
def grab_img(img_and_label):
"""Called to extract the image from an img_and_label input
(a dictionary). Also compatible with old-style PIL images.
"""
if isinstance(img_and_label, dict):
# if input is a dictionary, then
# it must contains the img or its size.
try:
return img_and_label["img"]
except KeyError:
return DummyImg(img_and_label["imsize"])
else:
# or it must be the img directly
return img_and_label
def update_img_and_labels(img_and_label, img, persp=None):
"""Called to update the img_and_label"""
if isinstance(img_and_label, dict):
img_and_label["img"] = img
img_and_label["imsize"] = img.size
if persp:
if "persp" not in img_and_label:
img_and_label["persp"] = (1, 0, 0, 0, 1, 0, 0, 0)
img_and_label["persp"] = persp_mul(persp, img_and_label["persp"])
return img_and_label
else:
# or it must be the img directly
return img
def rand_log_uniform(a, b):
return np.exp(np.random.uniform(np.log(a), np.log(b)))
def translate(tx, ty):
return (1, 0, tx, 0, 1, ty, 0, 0)
def rotate(angle):
return (np.cos(angle), -np.sin(angle), 0, np.sin(angle), np.cos(angle), 0, 0, 0)
def persp_mul(mat, mat2):
"""homography (perspective) multiplication.
mat: 8-tuple (homography transform)
mat2: 8-tuple (homography transform) or 2-tuple (point)
"""
assert isinstance(mat, tuple)
assert isinstance(mat2, tuple)
mat = np.float32(mat + (1,)).reshape(3, 3)
mat2 = np.array(mat2 + (1,)).reshape(3, 3)
res = np.dot(mat, mat2)
return tuple((res / res[2, 2]).ravel()[:8])
def persp_apply(mat, pts):
"""homography (perspective) transformation.
mat: 8-tuple (homography transform)
pts: numpy array
"""
assert isinstance(mat, tuple)
assert isinstance(pts, np.ndarray)
assert pts.shape[-1] == 2
mat = np.float32(mat + (1,)).reshape(3, 3)
if pts.ndim == 1:
pt = np.dot(pts, mat[:, :2].T).ravel() + mat[:, 2]
pt /= pt[2] # homogeneous coordinates
return tuple(pt[:2])
else:
pt = np.dot(pts, mat[:, :2].T) + mat[:, 2]
pt[:, :2] /= pt[:, 2:3] # homogeneous coordinates
return pt[:, :2]
def is_pil_image(img):
return isinstance(img, Image.Image)
def adjust_brightness(img, brightness_factor):
"""Adjust brightness of an Image.
Args:
img (PIL Image): PIL Image to be adjusted.
brightness_factor (float): How much to adjust the brightness. Can be
any non negative number. 0 gives a black image, 1 gives the
original image while 2 increases the brightness by a factor of 2.
Returns:
PIL Image: Brightness adjusted image.
Copied from https://github.com/pytorch in torchvision/transforms/functional.py
"""
if not is_pil_image(img):
raise TypeError("img should be PIL Image. Got {}".format(type(img)))
enhancer = ImageEnhance.Brightness(img)
img = enhancer.enhance(brightness_factor)
return img
def adjust_contrast(img, contrast_factor):
"""Adjust contrast of an Image.
Args:
img (PIL Image): PIL Image to be adjusted.
contrast_factor (float): How much to adjust the contrast. Can be any
non negative number. 0 gives a solid gray image, 1 gives the
original image while 2 increases the contrast by a factor of 2.
Returns:
PIL Image: Contrast adjusted image.
Copied from https://github.com/pytorch in torchvision/transforms/functional.py
"""
if not is_pil_image(img):
raise TypeError("img should be PIL Image. Got {}".format(type(img)))
enhancer = ImageEnhance.Contrast(img)
img = enhancer.enhance(contrast_factor)
return img
def adjust_saturation(img, saturation_factor):
"""Adjust color saturation of an image.
Args:
img (PIL Image): PIL Image to be adjusted.
saturation_factor (float): How much to adjust the saturation. 0 will
give a black and white image, 1 will give the original image while
2 will enhance the saturation by a factor of 2.
Returns:
PIL Image: Saturation adjusted image.
Copied from https://github.com/pytorch in torchvision/transforms/functional.py
"""
if not is_pil_image(img):
raise TypeError("img should be PIL Image. Got {}".format(type(img)))
enhancer = ImageEnhance.Color(img)
img = enhancer.enhance(saturation_factor)
return img
def adjust_hue(img, hue_factor):
"""Adjust hue of an image.
The image hue is adjusted by converting the image to HSV and
cyclically shifting the intensities in the hue channel (H).
The image is then converted back to original image mode.
`hue_factor` is the amount of shift in H channel and must be in the
interval `[-0.5, 0.5]`.
See https://en.wikipedia.org/wiki/Hue for more details on Hue.
Args:
img (PIL Image): PIL Image to be adjusted.
hue_factor (float): How much to shift the hue channel. Should be in
[-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
HSV space in positive and negative direction respectively.
0 means no shift. Therefore, both -0.5 and 0.5 will give an image
with complementary colors while 0 gives the original image.
Returns:
PIL Image: Hue adjusted image.
Copied from https://github.com/pytorch in torchvision/transforms/functional.py
"""
if not (-0.5 <= hue_factor <= 0.5):
raise ValueError("hue_factor is not in [-0.5, 0.5].".format(hue_factor))
if not is_pil_image(img):
raise TypeError("img should be PIL Image. Got {}".format(type(img)))
input_mode = img.mode
if input_mode in {"L", "1", "I", "F"}:
return img
h, s, v = img.convert("HSV").split()
np_h = np.array(h, dtype=np.uint8)
# uint8 addition take cares of rotation across boundaries
with np.errstate(over="ignore"):
np_h += np.uint8(hue_factor * 255)
h = Image.fromarray(np_h, "L")
img = Image.merge("HSV", (h, s, v)).convert(input_mode)
return img
|