File size: 10,061 Bytes
404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
# Copyright 2019-present NAVER Corp.
# CC BY-NC-SA 3.0
# Available only for non-commercial use
import os, pdb
import numpy as np
from PIL import Image
from .dataset import Dataset, CatDataset
from tools.transforms import instanciate_transformation
from tools.transforms_tools import persp_apply
class PairDataset(Dataset):
"""A dataset that serves image pairs with ground-truth pixel correspondences."""
def __init__(self):
Dataset.__init__(self)
self.npairs = 0
def get_filename(self, img_idx, root=None):
if is_pair(
img_idx
): # if img_idx is a pair of indices, we return a pair of filenames
return tuple(Dataset.get_filename(self, i, root) for i in img_idx)
return Dataset.get_filename(self, img_idx, root)
def get_image(self, img_idx):
if is_pair(
img_idx
): # if img_idx is a pair of indices, we return a pair of images
return tuple(Dataset.get_image(self, i) for i in img_idx)
return Dataset.get_image(self, img_idx)
def get_corres_filename(self, pair_idx):
raise NotImplementedError()
def get_homography_filename(self, pair_idx):
raise NotImplementedError()
def get_flow_filename(self, pair_idx):
raise NotImplementedError()
def get_mask_filename(self, pair_idx):
raise NotImplementedError()
def get_pair(self, idx, output=()):
"""returns (img1, img2, `metadata`)
`metadata` is a dict() that can contain:
flow: optical flow
aflow: absolute flow
corres: list of 2d-2d correspondences
mask: boolean image of flow validity (in the first image)
...
"""
raise NotImplementedError()
def get_paired_images(self):
fns = set()
for i in range(self.npairs):
a, b = self.image_pairs[i]
fns.add(self.get_filename(a))
fns.add(self.get_filename(b))
return fns
def __len__(self):
return self.npairs # size should correspond to the number of pairs, not images
def __repr__(self):
res = "Dataset: %s\n" % self.__class__.__name__
res += " %d images," % self.nimg
res += " %d image pairs" % self.npairs
res += "\n root: %s...\n" % self.root
return res
@staticmethod
def _flow2png(flow, path):
flow = np.clip(np.around(16 * flow), -(2**15), 2**15 - 1)
bytes = np.int16(flow).view(np.uint8)
Image.fromarray(bytes).save(path)
return flow / 16
@staticmethod
def _png2flow(path):
try:
flow = np.asarray(Image.open(path)).view(np.int16)
return np.float32(flow) / 16
except:
raise IOError("Error loading flow for %s" % path)
class StillPairDataset(PairDataset):
"""A dataset of 'still' image pairs.
By overloading a normal image dataset, it appends the get_pair(i) function
that serves trivial image pairs (img1, img2) where img1 == img2 == get_image(i).
"""
def get_pair(self, pair_idx, output=()):
if isinstance(output, str):
output = output.split()
img1, img2 = map(self.get_image, self.image_pairs[pair_idx])
W, H = img1.size
sx = img2.size[0] / float(W)
sy = img2.size[1] / float(H)
meta = {}
if "aflow" in output or "flow" in output:
mgrid = np.mgrid[0:H, 0:W][::-1].transpose(1, 2, 0).astype(np.float32)
meta["aflow"] = mgrid * (sx, sy)
meta["flow"] = meta["aflow"] - mgrid
if "mask" in output:
meta["mask"] = np.ones((H, W), np.uint8)
if "homography" in output:
meta["homography"] = np.diag(np.float32([sx, sy, 1]))
return img1, img2, meta
class SyntheticPairDataset(PairDataset):
"""A synthetic generator of image pairs.
Given a normal image dataset, it constructs pairs using random homographies & noise.
"""
def __init__(self, dataset, scale="", distort=""):
self.attach_dataset(dataset)
self.distort = instanciate_transformation(distort)
self.scale = instanciate_transformation(scale)
def attach_dataset(self, dataset):
assert isinstance(dataset, Dataset) and not isinstance(dataset, PairDataset)
self.dataset = dataset
self.npairs = dataset.nimg
self.get_image = dataset.get_image
self.get_key = dataset.get_key
self.get_filename = dataset.get_filename
self.root = None
def make_pair(self, img):
return img, img
def get_pair(self, i, output=("aflow")):
"""Procedure:
This function applies a series of random transformations to one original image
to form a synthetic image pairs with perfect ground-truth.
"""
if isinstance(output, str):
output = output.split()
original_img = self.dataset.get_image(i)
scaled_image = self.scale(original_img)
scaled_image, scaled_image2 = self.make_pair(scaled_image)
scaled_and_distorted_image = self.distort(
dict(img=scaled_image2, persp=(1, 0, 0, 0, 1, 0, 0, 0))
)
W, H = scaled_image.size
trf = scaled_and_distorted_image["persp"]
meta = dict()
if "aflow" in output or "flow" in output:
# compute optical flow
xy = np.mgrid[0:H, 0:W][::-1].reshape(2, H * W).T
aflow = np.float32(persp_apply(trf, xy).reshape(H, W, 2))
meta["flow"] = aflow - xy.reshape(H, W, 2)
meta["aflow"] = aflow
if "homography" in output:
meta["homography"] = np.float32(trf + (1,)).reshape(3, 3)
return scaled_image, scaled_and_distorted_image["img"], meta
def __repr__(self):
res = "Dataset: %s\n" % self.__class__.__name__
res += " %d images and pairs" % self.npairs
res += "\n root: %s..." % self.dataset.root
res += "\n Scale: %s" % (repr(self.scale).replace("\n", ""))
res += "\n Distort: %s" % (repr(self.distort).replace("\n", ""))
return res + "\n"
class TransformedPairs(PairDataset):
"""Automatic data augmentation for pre-existing image pairs.
Given an image pair dataset, it generates synthetically jittered pairs
using random transformations (e.g. homographies & noise).
"""
def __init__(self, dataset, trf=""):
self.attach_dataset(dataset)
self.trf = instanciate_transformation(trf)
def attach_dataset(self, dataset):
assert isinstance(dataset, PairDataset)
self.dataset = dataset
self.nimg = dataset.nimg
self.npairs = dataset.npairs
self.get_image = dataset.get_image
self.get_key = dataset.get_key
self.get_filename = dataset.get_filename
self.root = None
def get_pair(self, i, output=""):
"""Procedure:
This function applies a series of random transformations to one original image
to form a synthetic image pairs with perfect ground-truth.
"""
img_a, img_b_, metadata = self.dataset.get_pair(i, output)
img_b = self.trf({"img": img_b_, "persp": (1, 0, 0, 0, 1, 0, 0, 0)})
trf = img_b["persp"]
if "aflow" in metadata or "flow" in metadata:
aflow = metadata["aflow"]
aflow[:] = persp_apply(trf, aflow.reshape(-1, 2)).reshape(aflow.shape)
W, H = img_a.size
flow = metadata["flow"]
mgrid = np.mgrid[0:H, 0:W][::-1].transpose(1, 2, 0).astype(np.float32)
flow[:] = aflow - mgrid
if "corres" in metadata:
corres = metadata["corres"]
corres[:, 1] = persp_apply(trf, corres[:, 1])
if "homography" in metadata:
# p_b = homography * p_a
trf_ = np.float32(trf + (1,)).reshape(3, 3)
metadata["homography"] = np.float32(trf_ @ metadata["homography"])
return img_a, img_b["img"], metadata
def __repr__(self):
res = "Transformed Pairs from %s\n" % type(self.dataset).__name__
res += " %d images and pairs" % self.npairs
res += "\n root: %s..." % self.dataset.root
res += "\n transform: %s" % (repr(self.trf).replace("\n", ""))
return res + "\n"
class CatPairDataset(CatDataset):
"""Concatenation of several pair datasets."""
def __init__(self, *datasets):
CatDataset.__init__(self, *datasets)
pair_offsets = [0]
for db in datasets:
pair_offsets.append(db.npairs)
self.pair_offsets = np.cumsum(pair_offsets)
self.npairs = self.pair_offsets[-1]
def __len__(self):
return self.npairs
def __repr__(self):
fmt_str = "CatPairDataset("
for db in self.datasets:
fmt_str += str(db).replace("\n", " ") + ", "
return fmt_str[:-2] + ")"
def pair_which(self, i):
pos = np.searchsorted(self.pair_offsets, i, side="right") - 1
assert pos < self.npairs, "Bad pair index %d >= %d" % (i, self.npairs)
return pos, i - self.pair_offsets[pos]
def pair_call(self, func, i, *args, **kwargs):
b, j = self.pair_which(i)
return getattr(self.datasets[b], func)(j, *args, **kwargs)
def get_pair(self, i, output=()):
b, i = self.pair_which(i)
return self.datasets[b].get_pair(i, output)
def get_flow_filename(self, pair_idx, *args, **kwargs):
return self.pair_call("get_flow_filename", pair_idx, *args, **kwargs)
def get_mask_filename(self, pair_idx, *args, **kwargs):
return self.pair_call("get_mask_filename", pair_idx, *args, **kwargs)
def get_corres_filename(self, pair_idx, *args, **kwargs):
return self.pair_call("get_corres_filename", pair_idx, *args, **kwargs)
def is_pair(x):
if isinstance(x, (tuple, list)) and len(x) == 2:
return True
if isinstance(x, np.ndarray) and x.ndim == 1 and x.shape[0] == 2:
return True
return False
|