File size: 4,515 Bytes
404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import math
import numpy as np
import cv2
def extract_ORB_keypoints_and_descriptors(img):
# gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
detector = cv2.ORB_create(nfeatures=1000)
kp, desc = detector.detectAndCompute(img, None)
return kp, desc
def match_descriptors_NG(kp1, desc1, kp2, desc2):
bf = cv2.BFMatcher()
try:
matches = bf.knnMatch(desc1, desc2, k=2)
except:
matches = []
good_matches = []
image1_kp = []
image2_kp = []
ratios = []
try:
for (m1, m2) in matches:
if m1.distance < 0.8 * m2.distance:
good_matches.append(m1)
image2_kp.append(kp2[m1.trainIdx].pt)
image1_kp.append(kp1[m1.queryIdx].pt)
ratios.append(m1.distance / m2.distance)
except:
pass
image1_kp = np.array([image1_kp])
image2_kp = np.array([image2_kp])
ratios = np.array([ratios])
ratios = np.expand_dims(ratios, 2)
return image1_kp, image2_kp, good_matches, ratios
def match_descriptors(kp1, desc1, kp2, desc2, ORB):
if ORB:
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
try:
matches = bf.match(desc1, desc2)
matches = sorted(matches, key=lambda x: x.distance)
except:
matches = []
good_matches = []
image1_kp = []
image2_kp = []
count = 0
try:
for m in matches:
count += 1
if count < 1000:
good_matches.append(m)
image2_kp.append(kp2[m.trainIdx].pt)
image1_kp.append(kp1[m.queryIdx].pt)
except:
pass
else:
# Match the keypoints with the warped_keypoints with nearest neighbor search
bf = cv2.BFMatcher(cv2.NORM_L2, crossCheck=True)
try:
matches = bf.match(desc1.transpose(1, 0), desc2.transpose(1, 0))
matches = sorted(matches, key=lambda x: x.distance)
except:
matches = []
good_matches = []
image1_kp = []
image2_kp = []
try:
for m in matches:
good_matches.append(m)
image2_kp.append(kp2[m.trainIdx].pt)
image1_kp.append(kp1[m.queryIdx].pt)
except:
pass
image1_kp = np.array([image1_kp])
image2_kp = np.array([image2_kp])
return image1_kp, image2_kp, good_matches
def compute_essential(matched_kp1, matched_kp2, K):
pts1 = cv2.undistortPoints(
matched_kp1,
cameraMatrix=K,
distCoeffs=(-0.117918271740560, 0.075246403574314, 0, 0),
)
pts2 = cv2.undistortPoints(
matched_kp2,
cameraMatrix=K,
distCoeffs=(-0.117918271740560, 0.075246403574314, 0, 0),
)
K_1 = np.eye(3)
# Estimate the homography between the matches using RANSAC
ransac_model, ransac_inliers = cv2.findEssentialMat(
pts1, pts2, K_1, method=cv2.FM_RANSAC, prob=0.999, threshold=0.001
)
if ransac_inliers is None or ransac_model.shape != (3, 3):
ransac_inliers = np.array([])
ransac_model = None
return ransac_model, ransac_inliers, pts1, pts2
def compute_error(R_GT, t_GT, E, pts1_norm, pts2_norm, inliers):
"""Compute the angular error between two rotation matrices and two translation vectors.
Keyword arguments:
R -- 2D numpy array containing an estimated rotation
gt_R -- 2D numpy array containing the corresponding ground truth rotation
t -- 2D numpy array containing an estimated translation as column
gt_t -- 2D numpy array containing the corresponding ground truth translation
"""
inliers = inliers.ravel()
R = np.eye(3)
t = np.zeros((3, 1))
sst = True
try:
cv2.recoverPose(E, pts1_norm, pts2_norm, np.eye(3), R, t, inliers)
except:
sst = False
# calculate angle between provided rotations
#
if sst:
dR = np.matmul(R, np.transpose(R_GT))
dR = cv2.Rodrigues(dR)[0]
dR = np.linalg.norm(dR) * 180 / math.pi
# calculate angle between provided translations
dT = float(np.dot(t_GT.T, t))
dT /= float(np.linalg.norm(t_GT))
if dT > 1 or dT < -1:
print("Domain warning! dT:", dT)
dT = max(-1, min(1, dT))
dT = math.acos(dT) * 180 / math.pi
dT = np.minimum(dT, 180 - dT) # ambiguity of E estimation
else:
dR, dT = 180.0, 180.0
return dR, dT
|