File size: 3,388 Bytes
404d2af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# Copyright 2020 Toyota Research Institute.  All rights reserved.

import numpy as np
import torch
import torchvision.transforms as transforms
from tqdm import tqdm

from evaluation.descriptor_evaluation import (compute_homography,
                                                   compute_matching_score)
from evaluation.detector_evaluation import compute_repeatability


def evaluate_keypoint_net(data_loader, keypoint_net, output_shape=(320, 240), top_k=300):
    """Keypoint net evaluation script. 

    Parameters
    ----------
    data_loader: torch.utils.data.DataLoader
        Dataset loader. 
    keypoint_net: torch.nn.module
        Keypoint network.
    output_shape: tuple
        Original image shape.
    top_k: int
        Number of keypoints to use to compute metrics, selected based on probability.    
    use_color: bool
        Use color or grayscale images.
    """
    keypoint_net.eval()
    keypoint_net.training = False

    conf_threshold = 0.0
    localization_err, repeatability = [], []
    correctness1, correctness3, correctness5, MScore = [], [], [], []

    with torch.no_grad():
        for i, sample in tqdm(enumerate(data_loader), desc="Evaluate point model"):

            image = sample['image'].cuda()
            warped_image = sample['warped_image'].cuda()

            score_1, coord_1, desc1 = keypoint_net(image)
            score_2, coord_2, desc2 = keypoint_net(warped_image)
            B, _, Hc, Wc = desc1.shape

            # Scores & Descriptors
            score_1 = torch.cat([coord_1, score_1], dim=1).view(3, -1).t().cpu().numpy()
            score_2 = torch.cat([coord_2, score_2], dim=1).view(3, -1).t().cpu().numpy()
            desc1 = desc1.view(256, Hc, Wc).view(256, -1).t().cpu().numpy()
            desc2 = desc2.view(256, Hc, Wc).view(256, -1).t().cpu().numpy()
            
            # Filter based on confidence threshold
            desc1 = desc1[score_1[:, 2] > conf_threshold, :]
            desc2 = desc2[score_2[:, 2] > conf_threshold, :]
            score_1 = score_1[score_1[:, 2] > conf_threshold, :]
            score_2 = score_2[score_2[:, 2] > conf_threshold, :]

            # Prepare data for eval
            data = {'image': sample['image'].numpy().squeeze(),
                    'image_shape' : output_shape[::-1],
                    'warped_image': sample['warped_image'].numpy().squeeze(),
                    'homography': sample['homography'].squeeze().numpy(),
                    'prob': score_1, 
                    'warped_prob': score_2,
                    'desc': desc1,
                    'warped_desc': desc2}
            
            # Compute repeatabilty and localization error
            _, _, rep, loc_err = compute_repeatability(data, keep_k_points=top_k, distance_thresh=3)
            repeatability.append(rep)
            localization_err.append(loc_err)

            # Compute correctness
            c1, c2, c3 = compute_homography(data, keep_k_points=top_k)
            correctness1.append(c1)
            correctness3.append(c2)
            correctness5.append(c3)

            # Compute matching score
            mscore = compute_matching_score(data, keep_k_points=top_k)
            MScore.append(mscore)

    return np.mean(repeatability), np.mean(localization_err), \
           np.mean(correctness1), np.mean(correctness3), np.mean(correctness5), np.mean(MScore)