File size: 20,039 Bytes
e73df10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
# %BANNER_BEGIN%
# ---------------------------------------------------------------------
# %COPYRIGHT_BEGIN%
#
#  Magic Leap, Inc. ("COMPANY") CONFIDENTIAL
#
#  Unpublished Copyright (c) 2020
#  Magic Leap, Inc., All Rights Reserved.
#
# NOTICE:  All information contained herein is, and remains the property
# of COMPANY. The intellectual and technical concepts contained herein
# are proprietary to COMPANY and may be covered by U.S. and Foreign
# Patents, patents in process, and are protected by trade secret or
# copyright law.  Dissemination of this information or reproduction of
# this material is strictly forbidden unless prior written permission is
# obtained from COMPANY.  Access to the source code contained herein is
# hereby forbidden to anyone except current COMPANY employees, managers
# or contractors who have executed Confidentiality and Non-disclosure
# agreements explicitly covering such access.
#
# The copyright notice above does not evidence any actual or intended
# publication or disclosure  of  this source code, which includes
# information that is confidential and/or proprietary, and is a trade
# secret, of  COMPANY.   ANY REPRODUCTION, MODIFICATION, DISTRIBUTION,
# PUBLIC  PERFORMANCE, OR PUBLIC DISPLAY OF OR THROUGH USE  OF THIS
# SOURCE CODE  WITHOUT THE EXPRESS WRITTEN CONSENT OF COMPANY IS
# STRICTLY PROHIBITED, AND IN VIOLATION OF APPLICABLE LAWS AND
# INTERNATIONAL TREATIES.  THE RECEIPT OR POSSESSION OF  THIS SOURCE
# CODE AND/OR RELATED INFORMATION DOES NOT CONVEY OR IMPLY ANY RIGHTS
# TO REPRODUCE, DISCLOSE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE,
# USE, OR SELL ANYTHING THAT IT  MAY DESCRIBE, IN WHOLE OR IN PART.
#
# %COPYRIGHT_END%
# ----------------------------------------------------------------------
# %AUTHORS_BEGIN%
#
#  Originating Authors: Paul-Edouard Sarlin
#                       Daniel DeTone
#                       Tomasz Malisiewicz
#
# %AUTHORS_END%
# --------------------------------------------------------------------*/
# %BANNER_END%

from pathlib import Path
import time
from collections import OrderedDict
from threading import Thread
import numpy as np
import cv2
import torch
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('Agg')


class AverageTimer:
    """ Class to help manage printing simple timing of code execution. """

    def __init__(self, smoothing=0.3, newline=False):
        self.smoothing = smoothing
        self.newline = newline
        self.times = OrderedDict()
        self.will_print = OrderedDict()
        self.reset()

    def reset(self):
        now = time.time()
        self.start = now
        self.last_time = now
        for name in self.will_print:
            self.will_print[name] = False

    def update(self, name='default'):
        now = time.time()
        dt = now - self.last_time
        if name in self.times:
            dt = self.smoothing * dt + (1 - self.smoothing) * self.times[name]
        self.times[name] = dt
        self.will_print[name] = True
        self.last_time = now

    def print(self, text='Timer'):
        total = 0.
        print('[{}]'.format(text), end=' ')
        for key in self.times:
            val = self.times[key]
            if self.will_print[key]:
                print('%s=%.3f' % (key, val), end=' ')
                total += val
        print('total=%.3f sec {%.1f FPS}' % (total, 1./total), end=' ')
        if self.newline:
            print(flush=True)
        else:
            print(end='\r', flush=True)
        self.reset()


class VideoStreamer:
    """ Class to help process image streams. Four types of possible inputs:"
        1.) USB Webcam.
        2.) An IP camera
        3.) A directory of images (files in directory matching 'image_glob').
        4.) A video file, such as an .mp4 or .avi file.
    """
    def __init__(self, basedir, resize, skip, image_glob, max_length=1000000):
        self._ip_grabbed = False
        self._ip_running = False
        self._ip_camera = False
        self._ip_image = None
        self._ip_index = 0
        self.cap = []
        self.camera = True
        self.video_file = False
        self.listing = []
        self.resize = resize
        self.interp = cv2.INTER_AREA
        self.i = 0
        self.skip = skip
        self.max_length = max_length
        if isinstance(basedir, int) or basedir.isdigit():
            print('==> Processing USB webcam input: {}'.format(basedir))
            self.cap = cv2.VideoCapture(int(basedir))
            self.listing = range(0, self.max_length)
        elif basedir.startswith(('http', 'rtsp')):
            print('==> Processing IP camera input: {}'.format(basedir))
            self.cap = cv2.VideoCapture(basedir)
            self.start_ip_camera_thread()
            self._ip_camera = True
            self.listing = range(0, self.max_length)
        elif Path(basedir).is_dir():
            print('==> Processing image directory input: {}'.format(basedir))
            self.listing = list(Path(basedir).glob(image_glob[0]))
            for j in range(1, len(image_glob)):
                image_path = list(Path(basedir).glob(image_glob[j]))
                self.listing = self.listing + image_path
            self.listing.sort()
            self.listing = self.listing[::self.skip]
            self.max_length = np.min([self.max_length, len(self.listing)])
            if self.max_length == 0:
                raise IOError('No images found (maybe bad \'image_glob\' ?)')
            self.listing = self.listing[:self.max_length]
            self.camera = False
        elif Path(basedir).exists():
            print('==> Processing video input: {}'.format(basedir))
            self.cap = cv2.VideoCapture(basedir)
            self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 1)
            num_frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
            self.listing = range(0, num_frames)
            self.listing = self.listing[::self.skip]
            self.video_file = True
            self.max_length = np.min([self.max_length, len(self.listing)])
            self.listing = self.listing[:self.max_length]
        else:
            raise ValueError('VideoStreamer input \"{}\" not recognized.'.format(basedir))
        if self.camera and not self.cap.isOpened():
            raise IOError('Could not read camera')

    def load_image(self, impath):
        """ Read image as grayscale and resize to img_size.
        Inputs
            impath: Path to input image.
        Returns
            grayim: uint8 numpy array sized H x W.
        """
        grayim = cv2.imread(impath, 0)
        if grayim is None:
            raise Exception('Error reading image %s' % impath)
        w, h = grayim.shape[1], grayim.shape[0]
        w_new, h_new = process_resize(w, h, self.resize)
        grayim = cv2.resize(
            grayim, (w_new, h_new), interpolation=self.interp)
        return grayim

    def next_frame(self):
        """ Return the next frame, and increment internal counter.
        Returns
             image: Next H x W image.
             status: True or False depending whether image was loaded.
        """

        if self.i == self.max_length:
            return (None, False)
        if self.camera:

            if self._ip_camera:
                #Wait for first image, making sure we haven't exited
                while self._ip_grabbed is False and self._ip_exited is False:
                    time.sleep(.001)

                ret, image = self._ip_grabbed, self._ip_image.copy()
                if ret is False:
                    self._ip_running = False
            else:
                ret, image = self.cap.read()
            if ret is False:
                print('VideoStreamer: Cannot get image from camera')
                return (None, False)
            w, h = image.shape[1], image.shape[0]
            if self.video_file:
                self.cap.set(cv2.CAP_PROP_POS_FRAMES, self.listing[self.i])

            w_new, h_new = process_resize(w, h, self.resize)
            image = cv2.resize(image, (w_new, h_new),
                               interpolation=self.interp)
            image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
        else:
            image_file = str(self.listing[self.i])
            image = self.load_image(image_file)
        self.i = self.i + 1
        return (image, True)

    def start_ip_camera_thread(self):
        self._ip_thread = Thread(target=self.update_ip_camera, args=())
        self._ip_running = True
        self._ip_thread.start()
        self._ip_exited = False
        return self

    def update_ip_camera(self):
        while self._ip_running:
            ret, img = self.cap.read()
            if ret is False:
                self._ip_running = False
                self._ip_exited = True
                self._ip_grabbed = False
                return

            self._ip_image = img
            self._ip_grabbed = ret
            self._ip_index += 1
            #print('IPCAMERA THREAD got frame {}'.format(self._ip_index))


    def cleanup(self):
        self._ip_running = False

# --- PREPROCESSING ---

def process_resize(w, h, resize):
    assert(len(resize) > 0 and len(resize) <= 2)
    if len(resize) == 1 and resize[0] > -1:
        scale = resize[0] / max(h, w)
        w_new, h_new = int(round(w*scale)), int(round(h*scale))
    elif len(resize) == 1 and resize[0] == -1:
        w_new, h_new = w, h
    else:  # len(resize) == 2:
        w_new, h_new = resize[0], resize[1]

    # Issue warning if resolution is too small or too large.
    if max(w_new, h_new) < 160:
        print('Warning: input resolution is very small, results may vary')
    elif max(w_new, h_new) > 2000:
        print('Warning: input resolution is very large, results may vary')

    return w_new, h_new


def frame2tensor(frame, device):
    return torch.from_numpy(frame/255.).float()[None, None].to(device)


def read_image(path, device, resize, rotation, resize_float):
    image = cv2.imread(str(path), cv2.IMREAD_GRAYSCALE)
    if image is None:
        return None, None, None
    w, h = image.shape[1], image.shape[0]
    w_new, h_new = process_resize(w, h, resize)
    scales = (float(w) / float(w_new), float(h) / float(h_new))

    if resize_float:
        image = cv2.resize(image.astype('float32'), (w_new, h_new))
    else:
        image = cv2.resize(image, (w_new, h_new)).astype('float32')

    if rotation != 0:
        image = np.rot90(image, k=rotation)
        if rotation % 2:
            scales = scales[::-1]

    inp = frame2tensor(image, device)
    return image, inp, scales


# --- GEOMETRY ---


def estimate_pose(kpts0, kpts1, K0, K1, thresh, conf=0.99999):
    if len(kpts0) < 5:
        return None

    f_mean = np.mean([K0[0, 0], K1[1, 1], K0[0, 0], K1[1, 1]])
    norm_thresh = thresh / f_mean

    kpts0 = (kpts0 - K0[[0, 1], [2, 2]][None]) / K0[[0, 1], [0, 1]][None]
    kpts1 = (kpts1 - K1[[0, 1], [2, 2]][None]) / K1[[0, 1], [0, 1]][None]

    E, mask = cv2.findEssentialMat(
        kpts0, kpts1, np.eye(3), threshold=norm_thresh, prob=conf,
        method=cv2.RANSAC)

    assert E is not None

    best_num_inliers = 0
    ret = None
    for _E in np.split(E, len(E) / 3):
        n, R, t, _ = cv2.recoverPose(
            _E, kpts0, kpts1, np.eye(3), 1e9, mask=mask)
        if n > best_num_inliers:
            best_num_inliers = n
            ret = (R, t[:, 0], mask.ravel() > 0)
    return ret


def rotate_intrinsics(K, image_shape, rot):
    """image_shape is the shape of the image after rotation"""
    assert rot <= 3
    h, w = image_shape[:2][::-1 if (rot % 2) else 1]
    fx, fy, cx, cy = K[0, 0], K[1, 1], K[0, 2], K[1, 2]
    rot = rot % 4
    if rot == 1:
        return np.array([[fy, 0., cy],
                         [0., fx, w-1-cx],
                         [0., 0., 1.]], dtype=K.dtype)
    elif rot == 2:
        return np.array([[fx, 0., w-1-cx],
                         [0., fy, h-1-cy],
                         [0., 0., 1.]], dtype=K.dtype)
    else:  # if rot == 3:
        return np.array([[fy, 0., h-1-cy],
                         [0., fx, cx],
                         [0., 0., 1.]], dtype=K.dtype)


def rotate_pose_inplane(i_T_w, rot):
    rotation_matrices = [
        np.array([[np.cos(r), -np.sin(r), 0., 0.],
                  [np.sin(r), np.cos(r), 0., 0.],
                  [0., 0., 1., 0.],
                  [0., 0., 0., 1.]], dtype=np.float32)
        for r in [np.deg2rad(d) for d in (0, 270, 180, 90)]
    ]
    return np.dot(rotation_matrices[rot], i_T_w)


def scale_intrinsics(K, scales):
    scales = np.diag([1./scales[0], 1./scales[1], 1.])
    return np.dot(scales, K)


def to_homogeneous(points):
    return np.concatenate([points, np.ones_like(points[:, :1])], axis=-1)


def compute_epipolar_error(kpts0, kpts1, T_0to1, K0, K1):
    kpts0 = (kpts0 - K0[[0, 1], [2, 2]][None]) / K0[[0, 1], [0, 1]][None]
    kpts1 = (kpts1 - K1[[0, 1], [2, 2]][None]) / K1[[0, 1], [0, 1]][None]
    kpts0 = to_homogeneous(kpts0)
    kpts1 = to_homogeneous(kpts1)

    t0, t1, t2 = T_0to1[:3, 3]
    t_skew = np.array([
        [0, -t2, t1],
        [t2, 0, -t0],
        [-t1, t0, 0]
    ])
    E = t_skew @ T_0to1[:3, :3]

    Ep0 = kpts0 @ E.T  # N x 3
    p1Ep0 = np.sum(kpts1 * Ep0, -1)  # N
    Etp1 = kpts1 @ E  # N x 3
    d = p1Ep0**2 * (1.0 / (Ep0[:, 0]**2 + Ep0[:, 1]**2)
                    + 1.0 / (Etp1[:, 0]**2 + Etp1[:, 1]**2))
    return d


def angle_error_mat(R1, R2):
    cos = (np.trace(np.dot(R1.T, R2)) - 1) / 2
    cos = np.clip(cos, -1., 1.)  # numercial errors can make it out of bounds
    return np.rad2deg(np.abs(np.arccos(cos)))


def angle_error_vec(v1, v2):
    n = np.linalg.norm(v1) * np.linalg.norm(v2)
    return np.rad2deg(np.arccos(np.clip(np.dot(v1, v2) / n, -1.0, 1.0)))


def compute_pose_error(T_0to1, R, t):
    R_gt = T_0to1[:3, :3]
    t_gt = T_0to1[:3, 3]
    error_t = angle_error_vec(t, t_gt)
    error_t = np.minimum(error_t, 180 - error_t)  # ambiguity of E estimation
    error_R = angle_error_mat(R, R_gt)
    return error_t, error_R


def pose_auc(errors, thresholds):
    sort_idx = np.argsort(errors)
    errors = np.array(errors.copy())[sort_idx]
    recall = (np.arange(len(errors)) + 1) / len(errors)
    errors = np.r_[0., errors]
    recall = np.r_[0., recall]
    aucs = []
    for t in thresholds:
        last_index = np.searchsorted(errors, t)
        r = np.r_[recall[:last_index], recall[last_index-1]]
        e = np.r_[errors[:last_index], t]
        aucs.append(np.trapz(r, x=e)/t)
    return aucs


# --- VISUALIZATION ---


def plot_image_pair(imgs, dpi=100, size=6, pad=.5):
    n = len(imgs)
    assert n == 2, 'number of images must be two'
    figsize = (size*n, size*3/4) if size is not None else None
    _, ax = plt.subplots(1, n, figsize=figsize, dpi=dpi)
    for i in range(n):
        ax[i].imshow(imgs[i], cmap=plt.get_cmap('gray'), vmin=0, vmax=255)
        ax[i].get_yaxis().set_ticks([])
        ax[i].get_xaxis().set_ticks([])
        for spine in ax[i].spines.values():  # remove frame
            spine.set_visible(False)
    plt.tight_layout(pad=pad)


def plot_keypoints(kpts0, kpts1, color='w', ps=2):
    ax = plt.gcf().axes
    ax[0].scatter(kpts0[:, 0], kpts0[:, 1], c=color, s=ps)
    ax[1].scatter(kpts1[:, 0], kpts1[:, 1], c=color, s=ps)


def plot_matches(kpts0, kpts1, color, lw=1.5, ps=4):
    fig = plt.gcf()
    ax = fig.axes
    fig.canvas.draw()

    transFigure = fig.transFigure.inverted()
    fkpts0 = transFigure.transform(ax[0].transData.transform(kpts0))
    fkpts1 = transFigure.transform(ax[1].transData.transform(kpts1))

    fig.lines = [matplotlib.lines.Line2D(
        (fkpts0[i, 0], fkpts1[i, 0]), (fkpts0[i, 1], fkpts1[i, 1]), zorder=1,
        transform=fig.transFigure, c=color[i], linewidth=lw)
                 for i in range(len(kpts0))]
    ax[0].scatter(kpts0[:, 0], kpts0[:, 1], c=color, s=ps)
    ax[1].scatter(kpts1[:, 0], kpts1[:, 1], c=color, s=ps)


def make_matching_plot(image0, image1, kpts0, kpts1, mkpts0, mkpts1,
                       color, text, path, show_keypoints=False,
                       fast_viz=False, opencv_display=False,
                       opencv_title='matches', small_text=[]):

    if fast_viz:
        make_matching_plot_fast(image0, image1, kpts0, kpts1, mkpts0, mkpts1,
                                color, text, path, show_keypoints, 10,
                                opencv_display, opencv_title, small_text)
        return

    plot_image_pair([image0, image1])
    if show_keypoints:
        plot_keypoints(kpts0, kpts1, color='k', ps=4)
        plot_keypoints(kpts0, kpts1, color='w', ps=2)
    plot_matches(mkpts0, mkpts1, color)

    fig = plt.gcf()
    txt_color = 'k' if image0[:100, :150].mean() > 200 else 'w'
    fig.text(
        0.01, 0.99, '\n'.join(text), transform=fig.axes[0].transAxes,
        fontsize=15, va='top', ha='left', color=txt_color)

    txt_color = 'k' if image0[-100:, :150].mean() > 200 else 'w'
    fig.text(
        0.01, 0.01, '\n'.join(small_text), transform=fig.axes[0].transAxes,
        fontsize=5, va='bottom', ha='left', color=txt_color)

    plt.savefig(str(path), bbox_inches='tight', pad_inches=0)
    plt.close()


def make_matching_plot_fast(image0, image1, kpts0, kpts1, mkpts0,
                            mkpts1, color, text, path=None,
                            show_keypoints=False, margin=10,
                            opencv_display=False, opencv_title='',
                            small_text=[]):
    H0, W0 = image0.shape
    H1, W1 = image1.shape
    H, W = max(H0, H1), W0 + W1 + margin

    out = 255*np.ones((H, W), np.uint8)
    out[:H0, :W0] = image0
    out[:H1, W0+margin:] = image1
    out = np.stack([out]*3, -1)

    if show_keypoints:
        kpts0, kpts1 = np.round(kpts0).astype(int), np.round(kpts1).astype(int)
        white = (255, 255, 255)
        black = (0, 0, 0)
        for x, y in kpts0:
            cv2.circle(out, (x, y), 2, black, -1, lineType=cv2.LINE_AA)
            cv2.circle(out, (x, y), 1, white, -1, lineType=cv2.LINE_AA)
        for x, y in kpts1:
            cv2.circle(out, (x + margin + W0, y), 2, black, -1,
                       lineType=cv2.LINE_AA)
            cv2.circle(out, (x + margin + W0, y), 1, white, -1,
                       lineType=cv2.LINE_AA)

    mkpts0, mkpts1 = np.round(mkpts0).astype(int), np.round(mkpts1).astype(int)
    color = (np.array(color[:, :3])*255).astype(int)[:, ::-1]
    for (x0, y0), (x1, y1), c in zip(mkpts0, mkpts1, color):
        c = c.tolist()
        cv2.line(out, (x0, y0), (x1 + margin + W0, y1),
                 color=c, thickness=1, lineType=cv2.LINE_AA)
        # display line end-points as circles
        cv2.circle(out, (x0, y0), 2, c, -1, lineType=cv2.LINE_AA)
        cv2.circle(out, (x1 + margin + W0, y1), 2, c, -1,
                   lineType=cv2.LINE_AA)

    # Scale factor for consistent visualization across scales.
    sc = min(H / 640., 2.0)

    # Big text.
    Ht = int(30 * sc)  # text height
    txt_color_fg = (255, 255, 255)
    txt_color_bg = (0, 0, 0)
    for i, t in enumerate(text):
        cv2.putText(out, t, (int(8*sc), Ht*(i+1)), cv2.FONT_HERSHEY_DUPLEX,
                    1.0*sc, txt_color_bg, 2, cv2.LINE_AA)
        cv2.putText(out, t, (int(8*sc), Ht*(i+1)), cv2.FONT_HERSHEY_DUPLEX,
                    1.0*sc, txt_color_fg, 1, cv2.LINE_AA)

    # Small text.
    Ht = int(18 * sc)  # text height
    for i, t in enumerate(reversed(small_text)):
        cv2.putText(out, t, (int(8*sc), int(H-Ht*(i+.6))), cv2.FONT_HERSHEY_DUPLEX,
                    0.5*sc, txt_color_bg, 2, cv2.LINE_AA)
        cv2.putText(out, t, (int(8*sc), int(H-Ht*(i+.6))), cv2.FONT_HERSHEY_DUPLEX,
                    0.5*sc, txt_color_fg, 1, cv2.LINE_AA)

    if path is not None:
        cv2.imwrite(str(path), out)

    if opencv_display:
        cv2.imshow(opencv_title, out)
        cv2.waitKey(1)

    return out


def error_colormap(x):
    return np.clip(
        np.stack([2-x*2, x*2, np.zeros_like(x), np.ones_like(x)], -1), 0, 1)