File size: 3,078 Bytes
404d2af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import cv2
import numpy as np
import torch
import os

import sys
ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.insert(0, ROOT_DIR)

from superpoint import SuperPoint


def resize(img,resize):
    img_h,img_w=img.shape[0],img.shape[1]
    cur_size=max(img_h,img_w)
    if len(resize)==1: 
      scale1,scale2=resize[0]/cur_size,resize[0]/cur_size
    else:
      scale1,scale2=resize[0]/img_h,resize[1]/img_w
    new_h,new_w=int(img_h*scale1),int(img_w*scale2)
    new_img=cv2.resize(img.astype('float32'),(new_w,new_h)).astype('uint8')
    scale=np.asarray([scale2,scale1])
    return new_img,scale


class ExtractSIFT:
  def __init__(self,config,root=True):
    self.num_kp=config['num_kpt']
    self.contrastThreshold=config['det_th']
    self.resize=config['resize']
    self.root=root

  def run(self, img_path):
    self.sift = cv2.xfeatures2d.SIFT_create(nfeatures=self.num_kp, contrastThreshold=self.contrastThreshold)
    img = cv2.imread(img_path,cv2.IMREAD_GRAYSCALE)
    scale=[1,1]
    if self.resize[0]!=-1:
      img,scale=resize(img,self.resize)
    cv_kp, desc = self.sift.detectAndCompute(img, None)
    kp = np.array([[_kp.pt[0]/scale[1], _kp.pt[1]/scale[0], _kp.response] for _kp in cv_kp]) # N*3
    index=np.flip(np.argsort(kp[:,2]))
    kp,desc=kp[index],desc[index]
    if self.root:
      desc=np.sqrt(abs(desc/(np.linalg.norm(desc,axis=-1,ord=1)[:,np.newaxis]+1e-8)))
    return kp[:self.num_kp], desc[:self.num_kp]



class ExtractSuperpoint(object):
  def __init__(self,config):
    default_config = {
      'descriptor_dim': 256,
      'nms_radius': 4,
      'detection_threshold': config['det_th'],
      'max_keypoints': config['num_kpt'],
      'remove_borders': 4,
      'model_path':'../weights/sp/superpoint_v1.pth'
    }
    self.superpoint_extractor=SuperPoint(default_config)
    self.superpoint_extractor.eval(),self.superpoint_extractor.cuda()
    self.num_kp=config['num_kpt']
    if 'padding' in config.keys():
      self.padding=config['padding']
    else:
      self.padding=False
    self.resize=config['resize']

  def run(self,img_path):
    img = cv2.imread(img_path,cv2.IMREAD_GRAYSCALE)
    scale=1
    if self.resize[0]!=-1:
      img,scale=resize(img,self.resize)
    with torch.no_grad():
      result=self.superpoint_extractor(torch.from_numpy(img/255.).float()[None, None].cuda())
    score,kpt,desc=result['scores'][0],result['keypoints'][0],result['descriptors'][0]
    score,kpt,desc=score.cpu().numpy(),kpt.cpu().numpy(),desc.cpu().numpy().T
    kpt=np.concatenate([kpt/scale,score[:,np.newaxis]],axis=-1)
    #padding randomly
    if self.padding:
      if len(kpt)<self.num_kp:
        res=int(self.num_kp-len(kpt))
        pad_x,pad_desc=np.random.uniform(size=[res,2])*(img.shape[0]+img.shape[1])/2,np.random.uniform(size=[res,256])
        pad_kpt,pad_desc=np.concatenate([pad_x,np.zeros([res,1])],axis=-1),pad_desc/np.linalg.norm(pad_desc,axis=-1)[:,np.newaxis]
        kpt,desc=np.concatenate([kpt,pad_kpt],axis=0),np.concatenate([desc,pad_desc],axis=0)
    return kpt,desc