File size: 9,290 Bytes
62c7319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import os
from PIL import Image
import h5py
import numpy as np
import torch
import torchvision.transforms.functional as tvf
import kornia.augmentation as K
from roma.utils import get_depth_tuple_transform_ops, get_tuple_transform_ops
import roma
from roma.utils import *
import math

class MegadepthScene:
    def __init__(
        self,
        data_root,
        scene_info,
        ht=384,
        wt=512,
        min_overlap=0.0,
        max_overlap=1.0,
        shake_t=0,
        rot_prob=0.0,
        normalize=True,
        max_num_pairs = 100_000,
        scene_name = None,
        use_horizontal_flip_aug = False,
        use_single_horizontal_flip_aug = False,
        colorjiggle_params = None,
        random_eraser = None,
        use_randaug = False,
        randaug_params = None,
        randomize_size = False,
    ) -> None:
        self.data_root = data_root
        self.scene_name = os.path.splitext(scene_name)[0]+f"_{min_overlap}_{max_overlap}"
        self.image_paths = scene_info["image_paths"]
        self.depth_paths = scene_info["depth_paths"]
        self.intrinsics = scene_info["intrinsics"]
        self.poses = scene_info["poses"]
        self.pairs = scene_info["pairs"]
        self.overlaps = scene_info["overlaps"]
        threshold = (self.overlaps > min_overlap) & (self.overlaps < max_overlap)
        self.pairs = self.pairs[threshold]
        self.overlaps = self.overlaps[threshold]
        if len(self.pairs) > max_num_pairs:
            pairinds = np.random.choice(
                np.arange(0, len(self.pairs)), max_num_pairs, replace=False
            )
            self.pairs = self.pairs[pairinds]
            self.overlaps = self.overlaps[pairinds]
        if randomize_size:
            area = ht * wt
            s = int(16 * (math.sqrt(area)//16))
            sizes = ((ht,wt), (s,s), (wt,ht))
            choice = roma.RANK % 3
            ht, wt = sizes[choice] 
        # counts, bins = np.histogram(self.overlaps,20)
        # print(counts)
        self.im_transform_ops = get_tuple_transform_ops(
            resize=(ht, wt), normalize=normalize, colorjiggle_params = colorjiggle_params,
        )
        self.depth_transform_ops = get_depth_tuple_transform_ops(
                resize=(ht, wt)
            )
        self.wt, self.ht = wt, ht
        self.shake_t = shake_t
        self.random_eraser = random_eraser
        if use_horizontal_flip_aug and use_single_horizontal_flip_aug:
            raise ValueError("Can't both flip both images and only flip one")
        self.use_horizontal_flip_aug = use_horizontal_flip_aug
        self.use_single_horizontal_flip_aug = use_single_horizontal_flip_aug
        self.use_randaug = use_randaug

    def load_im(self, im_path):
        im = Image.open(im_path)
        return im
    
    def horizontal_flip(self, im_A, im_B, depth_A, depth_B,  K_A, K_B):
        im_A = im_A.flip(-1)
        im_B = im_B.flip(-1)
        depth_A, depth_B = depth_A.flip(-1), depth_B.flip(-1) 
        flip_mat = torch.tensor([[-1, 0, self.wt],[0,1,0],[0,0,1.]]).to(K_A.device)
        K_A = flip_mat@K_A  
        K_B = flip_mat@K_B  
        
        return im_A, im_B, depth_A, depth_B, K_A, K_B
    
    def load_depth(self, depth_ref, crop=None):
        depth = np.array(h5py.File(depth_ref, "r")["depth"])
        return torch.from_numpy(depth)

    def __len__(self):
        return len(self.pairs)

    def scale_intrinsic(self, K, wi, hi):
        sx, sy = self.wt / wi, self.ht / hi
        sK = torch.tensor([[sx, 0, 0], [0, sy, 0], [0, 0, 1]])
        return sK @ K

    def rand_shake(self, *things):
        t = np.random.choice(range(-self.shake_t, self.shake_t + 1), size=2)
        return [
            tvf.affine(thing, angle=0.0, translate=list(t), scale=1.0, shear=[0.0, 0.0])
            for thing in things
        ], t

    def __getitem__(self, pair_idx):
        # read intrinsics of original size
        idx1, idx2 = self.pairs[pair_idx]
        K1 = torch.tensor(self.intrinsics[idx1].copy(), dtype=torch.float).reshape(3, 3)
        K2 = torch.tensor(self.intrinsics[idx2].copy(), dtype=torch.float).reshape(3, 3)

        # read and compute relative poses
        T1 = self.poses[idx1]
        T2 = self.poses[idx2]
        T_1to2 = torch.tensor(np.matmul(T2, np.linalg.inv(T1)), dtype=torch.float)[
            :4, :4
        ]  # (4, 4)

        # Load positive pair data
        im_A, im_B = self.image_paths[idx1], self.image_paths[idx2]
        depth1, depth2 = self.depth_paths[idx1], self.depth_paths[idx2]
        im_A_ref = os.path.join(self.data_root, im_A)
        im_B_ref = os.path.join(self.data_root, im_B)
        depth_A_ref = os.path.join(self.data_root, depth1)
        depth_B_ref = os.path.join(self.data_root, depth2)
        im_A = self.load_im(im_A_ref)
        im_B = self.load_im(im_B_ref)
        K1 = self.scale_intrinsic(K1, im_A.width, im_A.height)
        K2 = self.scale_intrinsic(K2, im_B.width, im_B.height)

        if self.use_randaug:
            im_A, im_B = self.rand_augment(im_A, im_B)

        depth_A = self.load_depth(depth_A_ref)
        depth_B = self.load_depth(depth_B_ref)
        # Process images
        im_A, im_B = self.im_transform_ops((im_A, im_B))
        depth_A, depth_B = self.depth_transform_ops(
            (depth_A[None, None], depth_B[None, None])
        )
        
        [im_A, im_B, depth_A, depth_B], t = self.rand_shake(im_A, im_B, depth_A, depth_B)
        K1[:2, 2] += t
        K2[:2, 2] += t
        
        im_A, im_B = im_A[None], im_B[None]
        if self.random_eraser is not None:
            im_A, depth_A = self.random_eraser(im_A, depth_A)
            im_B, depth_B = self.random_eraser(im_B, depth_B)
                
        if self.use_horizontal_flip_aug:
            if np.random.rand() > 0.5:
                im_A, im_B, depth_A, depth_B, K1, K2 = self.horizontal_flip(im_A, im_B, depth_A, depth_B, K1, K2)
        if self.use_single_horizontal_flip_aug:
            if np.random.rand() > 0.5:
                im_B, depth_B, K2 = self.single_horizontal_flip(im_B, depth_B, K2)
        
        if roma.DEBUG_MODE:
            tensor_to_pil(im_A[0], unnormalize=True).save(
                            f"vis/im_A.jpg")
            tensor_to_pil(im_B[0], unnormalize=True).save(
                            f"vis/im_B.jpg")
            
        data_dict = {
            "im_A": im_A[0],
            "im_A_identifier": self.image_paths[idx1].split("/")[-1].split(".jpg")[0],
            "im_B": im_B[0],
            "im_B_identifier": self.image_paths[idx2].split("/")[-1].split(".jpg")[0],
            "im_A_depth": depth_A[0, 0],
            "im_B_depth": depth_B[0, 0],
            "K1": K1,
            "K2": K2,
            "T_1to2": T_1to2,
            "im_A_path": im_A_ref,
            "im_B_path": im_B_ref,
            
        }
        return data_dict


class MegadepthBuilder:
    def __init__(self, data_root="data/megadepth", loftr_ignore=True, imc21_ignore = True) -> None:
        self.data_root = data_root
        self.scene_info_root = os.path.join(data_root, "prep_scene_info")
        self.all_scenes = os.listdir(self.scene_info_root)
        self.test_scenes = ["0017.npy", "0004.npy", "0048.npy", "0013.npy"]
        # LoFTR did the D2-net preprocessing differently than we did and got more ignore scenes, can optionially ignore those
        self.loftr_ignore_scenes = set(['0121.npy', '0133.npy', '0168.npy', '0178.npy', '0229.npy', '0349.npy', '0412.npy', '0430.npy', '0443.npy', '1001.npy', '5014.npy', '5015.npy', '5016.npy'])
        self.imc21_scenes = set(['0008.npy', '0019.npy', '0021.npy', '0024.npy', '0025.npy', '0032.npy', '0063.npy', '1589.npy'])
        self.test_scenes_loftr = ["0015.npy", "0022.npy"]
        self.loftr_ignore = loftr_ignore
        self.imc21_ignore = imc21_ignore

    def build_scenes(self, split="train", min_overlap=0.0, scene_names = None, **kwargs):
        if split == "train":
            scene_names = set(self.all_scenes) - set(self.test_scenes)
        elif split == "train_loftr":
            scene_names = set(self.all_scenes) - set(self.test_scenes_loftr)
        elif split == "test":
            scene_names = self.test_scenes
        elif split == "test_loftr":
            scene_names = self.test_scenes_loftr
        elif split == "custom":
            scene_names = scene_names
        else:
            raise ValueError(f"Split {split} not available")
        scenes = []
        for scene_name in scene_names:
            if self.loftr_ignore and scene_name in self.loftr_ignore_scenes:
                continue
            if self.imc21_ignore and scene_name in self.imc21_scenes:
                continue
            scene_info = np.load(
                os.path.join(self.scene_info_root, scene_name), allow_pickle=True
            ).item()
            scenes.append(
                MegadepthScene(
                    self.data_root, scene_info, min_overlap=min_overlap,scene_name = scene_name, **kwargs
                )
            )
        return scenes

    def weight_scenes(self, concat_dataset, alpha=0.5):
        ns = []
        for d in concat_dataset.datasets:
            ns.append(len(d))
        ws = torch.cat([torch.ones(n) / n**alpha for n in ns])
        return ws