File size: 11,552 Bytes
404d2af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import time
import numpy as np
import torch
import torch.nn.functional as F
def rnd_sample(inputs, n_sample):
cur_size = inputs[0].shape[0]
rnd_idx = torch.randperm(cur_size)[0:n_sample]
outputs = [i[rnd_idx] for i in inputs]
return outputs
def _grid_positions(h, w, bs):
x_rng = torch.arange(0, w.int())
y_rng = torch.arange(0, h.int())
xv, yv = torch.meshgrid(x_rng, y_rng, indexing='xy')
return torch.reshape(
torch.stack((yv, xv), axis=-1),
(1, -1, 2)
).repeat(bs, 1, 1).float()
def getK(ori_img_size, cur_feat_size, K):
# WARNING: cur_feat_size's order is [h, w]
r = ori_img_size / cur_feat_size[[1, 0]]
r_K0 = torch.stack([K[:, 0] / r[:, 0][..., None], K[:, 1] /
r[:, 1][..., None], K[:, 2]], axis=1)
return r_K0
def gather_nd(params, indices):
""" The same as tf.gather_nd but batched gather is not supported yet.
indices is an k-dimensional integer tensor, best thought of as a (k-1)-dimensional tensor of indices into params, where each element defines a slice of params:
output[\\(i_0, ..., i_{k-2}\\)] = params[indices[\\(i_0, ..., i_{k-2}\\)]]
Args:
params (Tensor): "n" dimensions. shape: [x_0, x_1, x_2, ..., x_{n-1}]
indices (Tensor): "k" dimensions. shape: [y_0,y_2,...,y_{k-2}, m]. m <= n.
Returns: gathered Tensor.
shape [y_0,y_2,...y_{k-2}] + params.shape[m:]
"""
orig_shape = list(indices.shape)
num_samples = np.prod(orig_shape[:-1])
m = orig_shape[-1]
n = len(params.shape)
if m <= n:
out_shape = orig_shape[:-1] + list(params.shape)[m:]
else:
raise ValueError(
f'the last dimension of indices must less or equal to the rank of params. Got indices:{indices.shape}, params:{params.shape}. {m} > {n}'
)
indices = indices.reshape((num_samples, m)).transpose(0, 1).tolist()
output = params[indices] # (num_samples, ...)
return output.reshape(out_shape).contiguous()
# input: pos [kpt_n, 2]; inputs [H, W, 128] / [H, W]
# output: [kpt_n, 128] / [kpt_n]
def interpolate(pos, inputs, nd=True):
h = inputs.shape[0]
w = inputs.shape[1]
i = pos[:, 0]
j = pos[:, 1]
i_top_left = torch.clamp(torch.floor(i).int(), 0, h - 1)
j_top_left = torch.clamp(torch.floor(j).int(), 0, w - 1)
i_top_right = torch.clamp(torch.floor(i).int(), 0, h - 1)
j_top_right = torch.clamp(torch.ceil(j).int(), 0, w - 1)
i_bottom_left = torch.clamp(torch.ceil(i).int(), 0, h - 1)
j_bottom_left = torch.clamp(torch.floor(j).int(), 0, w - 1)
i_bottom_right = torch.clamp(torch.ceil(i).int(), 0, h - 1)
j_bottom_right = torch.clamp(torch.ceil(j).int(), 0, w - 1)
dist_i_top_left = i - i_top_left.float()
dist_j_top_left = j - j_top_left.float()
w_top_left = (1 - dist_i_top_left) * (1 - dist_j_top_left)
w_top_right = (1 - dist_i_top_left) * dist_j_top_left
w_bottom_left = dist_i_top_left * (1 - dist_j_top_left)
w_bottom_right = dist_i_top_left * dist_j_top_left
if nd:
w_top_left = w_top_left[..., None]
w_top_right = w_top_right[..., None]
w_bottom_left = w_bottom_left[..., None]
w_bottom_right = w_bottom_right[..., None]
interpolated_val = (
w_top_left * gather_nd(inputs, torch.stack([i_top_left, j_top_left], axis=-1)) +
w_top_right * gather_nd(inputs, torch.stack([i_top_right, j_top_right], axis=-1)) +
w_bottom_left * gather_nd(inputs, torch.stack([i_bottom_left, j_bottom_left], axis=-1)) +
w_bottom_right *
gather_nd(inputs, torch.stack([i_bottom_right, j_bottom_right], axis=-1))
)
return interpolated_val
def validate_and_interpolate(pos, inputs, validate_corner=True, validate_val=None, nd=False):
if nd:
h, w, c = inputs.shape
else:
h, w = inputs.shape
ids = torch.arange(0, pos.shape[0])
i = pos[:, 0]
j = pos[:, 1]
i_top_left = torch.floor(i).int()
j_top_left = torch.floor(j).int()
i_top_right = torch.floor(i).int()
j_top_right = torch.ceil(j).int()
i_bottom_left = torch.ceil(i).int()
j_bottom_left = torch.floor(j).int()
i_bottom_right = torch.ceil(i).int()
j_bottom_right = torch.ceil(j).int()
if validate_corner:
# Valid corner
valid_top_left = torch.logical_and(i_top_left >= 0, j_top_left >= 0)
valid_top_right = torch.logical_and(i_top_right >= 0, j_top_right < w)
valid_bottom_left = torch.logical_and(i_bottom_left < h, j_bottom_left >= 0)
valid_bottom_right = torch.logical_and(i_bottom_right < h, j_bottom_right < w)
valid_corner = torch.logical_and(
torch.logical_and(valid_top_left, valid_top_right),
torch.logical_and(valid_bottom_left, valid_bottom_right)
)
i_top_left = i_top_left[valid_corner]
j_top_left = j_top_left[valid_corner]
i_top_right = i_top_right[valid_corner]
j_top_right = j_top_right[valid_corner]
i_bottom_left = i_bottom_left[valid_corner]
j_bottom_left = j_bottom_left[valid_corner]
i_bottom_right = i_bottom_right[valid_corner]
j_bottom_right = j_bottom_right[valid_corner]
ids = ids[valid_corner]
if validate_val is not None:
# Valid depth
valid_depth = torch.logical_and(
torch.logical_and(
gather_nd(inputs, torch.stack([i_top_left, j_top_left], axis=-1)) > 0,
gather_nd(inputs, torch.stack([i_top_right, j_top_right], axis=-1)) > 0
),
torch.logical_and(
gather_nd(inputs, torch.stack([i_bottom_left, j_bottom_left], axis=-1)) > 0,
gather_nd(inputs, torch.stack([i_bottom_right, j_bottom_right], axis=-1)) > 0
)
)
i_top_left = i_top_left[valid_depth]
j_top_left = j_top_left[valid_depth]
i_top_right = i_top_right[valid_depth]
j_top_right = j_top_right[valid_depth]
i_bottom_left = i_bottom_left[valid_depth]
j_bottom_left = j_bottom_left[valid_depth]
i_bottom_right = i_bottom_right[valid_depth]
j_bottom_right = j_bottom_right[valid_depth]
ids = ids[valid_depth]
# Interpolation
i = i[ids]
j = j[ids]
dist_i_top_left = i - i_top_left.float()
dist_j_top_left = j - j_top_left.float()
w_top_left = (1 - dist_i_top_left) * (1 - dist_j_top_left)
w_top_right = (1 - dist_i_top_left) * dist_j_top_left
w_bottom_left = dist_i_top_left * (1 - dist_j_top_left)
w_bottom_right = dist_i_top_left * dist_j_top_left
if nd:
w_top_left = w_top_left[..., None]
w_top_right = w_top_right[..., None]
w_bottom_left = w_bottom_left[..., None]
w_bottom_right = w_bottom_right[..., None]
interpolated_val = (
w_top_left * gather_nd(inputs, torch.stack([i_top_left, j_top_left], axis=-1)) +
w_top_right * gather_nd(inputs, torch.stack([i_top_right, j_top_right], axis=-1)) +
w_bottom_left * gather_nd(inputs, torch.stack([i_bottom_left, j_bottom_left], axis=-1)) +
w_bottom_right * gather_nd(inputs, torch.stack([i_bottom_right, j_bottom_right], axis=-1))
)
pos = torch.stack([i, j], axis=1)
return [interpolated_val, pos, ids]
# pos0: [2, 230400, 2]
# depth0: [2, 480, 480]
def getWarp(pos0, rel_pose, depth0, K0, depth1, K1, bs):
def swap_axis(data):
return torch.stack([data[:, 1], data[:, 0]], axis=-1)
all_pos0 = []
all_pos1 = []
all_ids = []
for i in range(bs):
z0, new_pos0, ids = validate_and_interpolate(pos0[i], depth0[i], validate_val=0)
uv0_homo = torch.cat([swap_axis(new_pos0), torch.ones((new_pos0.shape[0], 1)).to(new_pos0.device)], axis=-1)
xy0_homo = torch.matmul(torch.linalg.inv(K0[i]), uv0_homo.t())
xyz0_homo = torch.cat([torch.unsqueeze(z0, 0) * xy0_homo,
torch.ones((1, new_pos0.shape[0])).to(z0.device)], axis=0)
xyz1 = torch.matmul(rel_pose[i], xyz0_homo)
xy1_homo = xyz1 / torch.unsqueeze(xyz1[-1, :], axis=0)
uv1 = torch.matmul(K1[i], xy1_homo).t()[:, 0:2]
new_pos1 = swap_axis(uv1)
annotated_depth, new_pos1, new_ids = validate_and_interpolate(
new_pos1, depth1[i], validate_val=0)
ids = ids[new_ids]
new_pos0 = new_pos0[new_ids]
estimated_depth = xyz1.t()[new_ids][:, -1]
inlier_mask = torch.abs(estimated_depth - annotated_depth) < 0.05
all_ids.append(ids[inlier_mask])
all_pos0.append(new_pos0[inlier_mask])
all_pos1.append(new_pos1[inlier_mask])
# all_pos0 & all_pose1: [inlier_num, 2] * batch_size
return all_pos0, all_pos1, all_ids
# pos0: [2, 230400, 2]
# depth0: [2, 480, 480]
def getWarpNoValidate(pos0, rel_pose, depth0, K0, depth1, K1, bs):
def swap_axis(data):
return torch.stack([data[:, 1], data[:, 0]], axis=-1)
all_pos0 = []
all_pos1 = []
all_ids = []
for i in range(bs):
z0, new_pos0, ids = validate_and_interpolate(pos0[i], depth0[i], validate_val=0)
uv0_homo = torch.cat([swap_axis(new_pos0), torch.ones((new_pos0.shape[0], 1)).to(new_pos0.device)], axis=-1)
xy0_homo = torch.matmul(torch.linalg.inv(K0[i]), uv0_homo.t())
xyz0_homo = torch.cat([torch.unsqueeze(z0, 0) * xy0_homo,
torch.ones((1, new_pos0.shape[0])).to(z0.device)], axis=0)
xyz1 = torch.matmul(rel_pose[i], xyz0_homo)
xy1_homo = xyz1 / torch.unsqueeze(xyz1[-1, :], axis=0)
uv1 = torch.matmul(K1[i], xy1_homo).t()[:, 0:2]
new_pos1 = swap_axis(uv1)
_, new_pos1, new_ids = validate_and_interpolate(
new_pos1, depth1[i], validate_val=0)
ids = ids[new_ids]
new_pos0 = new_pos0[new_ids]
all_ids.append(ids)
all_pos0.append(new_pos0)
all_pos1.append(new_pos1)
# all_pos0 & all_pose1: [inlier_num, 2] * batch_size
return all_pos0, all_pos1, all_ids
# pos0: [2, 230400, 2]
# depth0: [2, 480, 480]
def getWarpNoValidate2(pos0, rel_pose, depth0, K0, depth1, K1):
def swap_axis(data):
return torch.stack([data[:, 1], data[:, 0]], axis=-1)
z0 = interpolate(pos0, depth0, nd=False)
uv0_homo = torch.cat([swap_axis(pos0), torch.ones((pos0.shape[0], 1)).to(pos0.device)], axis=-1)
xy0_homo = torch.matmul(torch.linalg.inv(K0), uv0_homo.t())
xyz0_homo = torch.cat([torch.unsqueeze(z0, 0) * xy0_homo,
torch.ones((1, pos0.shape[0])).to(z0.device)], axis=0)
xyz1 = torch.matmul(rel_pose, xyz0_homo)
xy1_homo = xyz1 / torch.unsqueeze(xyz1[-1, :], axis=0)
uv1 = torch.matmul(K1, xy1_homo).t()[:, 0:2]
new_pos1 = swap_axis(uv1)
return new_pos1
def get_dist_mat(feat1, feat2, dist_type):
eps = 1e-6
cos_dist_mat = torch.matmul(feat1, feat2.t())
if dist_type == 'cosine_dist':
dist_mat = torch.clamp(cos_dist_mat, -1, 1)
elif dist_type == 'euclidean_dist':
dist_mat = torch.sqrt(torch.clamp(2 - 2 * cos_dist_mat, min=eps))
elif dist_type == 'euclidean_dist_no_norm':
norm1 = torch.sum(feat1 * feat1, axis=-1, keepdims=True)
norm2 = torch.sum(feat2 * feat2, axis=-1, keepdims=True)
dist_mat = torch.sqrt(
torch.clamp(
norm1 - 2 * cos_dist_mat + norm2.t(),
min=0.
) + eps
)
else:
raise NotImplementedError()
return dist_mat
|