File size: 5,582 Bytes
404d2af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import math
import argparse
import pprint
from distutils.util import strtobool
from pathlib import Path
from loguru import logger as loguru_logger
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_only
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor
from pytorch_lightning.plugins import DDPPlugin
from src.config.default import get_cfg_defaults
from src.utils.misc import get_rank_zero_only_logger, setup_gpus
from src.utils.profiler import build_profiler
from src.lightning.data import MultiSceneDataModule
from src.lightning.lightning_aspanformer import PL_ASpanFormer
loguru_logger = get_rank_zero_only_logger(loguru_logger)
def parse_args():
def str2bool(v):
return v.lower() in ("true", "1")
# init a costum parser which will be added into pl.Trainer parser
# check documentation: https://pytorch-lightning.readthedocs.io/en/latest/common/trainer.html#trainer-flags
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
'data_cfg_path', type=str, help='data config path')
parser.add_argument(
'main_cfg_path', type=str, help='main config path')
parser.add_argument(
'--exp_name', type=str, default='default_exp_name')
parser.add_argument(
'--batch_size', type=int, default=4, help='batch_size per gpu')
parser.add_argument(
'--num_workers', type=int, default=4)
parser.add_argument(
'--pin_memory', type=lambda x: bool(strtobool(x)),
nargs='?', default=True, help='whether loading data to pinned memory or not')
parser.add_argument(
'--ckpt_path', type=str, default=None,
help='pretrained checkpoint path, helpful for using a pre-trained coarse-only ASpanFormer')
parser.add_argument(
'--disable_ckpt', action='store_true',
help='disable checkpoint saving (useful for debugging).')
parser.add_argument(
'--profiler_name', type=str, default=None,
help='options: [inference, pytorch], or leave it unset')
parser.add_argument(
'--parallel_load_data', action='store_true',
help='load datasets in with multiple processes.')
parser.add_argument(
'--mode', type=str, default='vanilla',
help='pretrained checkpoint path, helpful for using a pre-trained coarse-only ASpanFormer')
parser.add_argument(
'--ini', type=str2bool, default=False,
help='pretrained checkpoint path, helpful for using a pre-trained coarse-only ASpanFormer')
parser = pl.Trainer.add_argparse_args(parser)
return parser.parse_args()
def main():
# parse arguments
args = parse_args()
rank_zero_only(pprint.pprint)(vars(args))
# init default-cfg and merge it with the main- and data-cfg
config = get_cfg_defaults()
config.merge_from_file(args.main_cfg_path)
config.merge_from_file(args.data_cfg_path)
pl.seed_everything(config.TRAINER.SEED) # reproducibility
# TODO: Use different seeds for each dataloader workers
# This is needed for data augmentation
# scale lr and warmup-step automatically
args.gpus = _n_gpus = setup_gpus(args.gpus)
config.TRAINER.WORLD_SIZE = _n_gpus * args.num_nodes
config.TRAINER.TRUE_BATCH_SIZE = config.TRAINER.WORLD_SIZE * args.batch_size
_scaling = config.TRAINER.TRUE_BATCH_SIZE / config.TRAINER.CANONICAL_BS
config.TRAINER.SCALING = _scaling
config.TRAINER.TRUE_LR = config.TRAINER.CANONICAL_LR * _scaling
config.TRAINER.WARMUP_STEP = math.floor(
config.TRAINER.WARMUP_STEP / _scaling)
# lightning module
profiler = build_profiler(args.profiler_name)
model = PL_ASpanFormer(config, pretrained_ckpt=args.ckpt_path, profiler=profiler)
loguru_logger.info(f"ASpanFormer LightningModule initialized!")
# lightning data
data_module = MultiSceneDataModule(args, config)
loguru_logger.info(f"ASpanFormer DataModule initialized!")
# TensorBoard Logger
logger = TensorBoardLogger(
save_dir='logs/tb_logs', name=args.exp_name, default_hp_metric=False)
ckpt_dir = Path(logger.log_dir) / 'checkpoints'
# Callbacks
# TODO: update ModelCheckpoint to monitor multiple metrics
ckpt_callback = ModelCheckpoint(monitor='auc@10', verbose=True, save_top_k=5, mode='max',
save_last=True,
dirpath=str(ckpt_dir),
filename='{epoch}-{auc@5:.3f}-{auc@10:.3f}-{auc@20:.3f}')
lr_monitor = LearningRateMonitor(logging_interval='step')
callbacks = [lr_monitor]
if not args.disable_ckpt:
callbacks.append(ckpt_callback)
# Lightning Trainer
trainer = pl.Trainer.from_argparse_args(
args,
plugins=DDPPlugin(find_unused_parameters=False,
num_nodes=args.num_nodes,
sync_batchnorm=config.TRAINER.WORLD_SIZE > 0),
gradient_clip_val=config.TRAINER.GRADIENT_CLIPPING,
callbacks=callbacks,
logger=logger,
sync_batchnorm=config.TRAINER.WORLD_SIZE > 0,
replace_sampler_ddp=False, # use custom sampler
reload_dataloaders_every_epoch=False, # avoid repeated samples!
weights_summary='full',
profiler=profiler)
loguru_logger.info(f"Trainer initialized!")
loguru_logger.info(f"Start training!")
trainer.fit(model, datamodule=data_module)
if __name__ == '__main__':
main()
|