File size: 9,672 Bytes
a64b7d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import datetime
import logging
import math
import time
import torch
from os import path as osp

from basicsr.data import build_dataloader, build_dataset
from basicsr.data.data_sampler import EnlargedSampler
from basicsr.data.prefetch_dataloader import CPUPrefetcher, CUDAPrefetcher
from basicsr.models import build_model
from basicsr.utils import (AvgTimer, MessageLogger, check_resume, get_env_info, get_root_logger, get_time_str,
                           init_tb_logger, init_wandb_logger, make_exp_dirs, mkdir_and_rename, scandir)
from basicsr.utils.options import copy_opt_file, dict2str, parse_options


def init_tb_loggers(opt):
    # initialize wandb logger before tensorboard logger to allow proper sync
    if (opt['logger'].get('wandb') is not None) and (opt['logger']['wandb'].get('project')
                                                     is not None) and ('debug' not in opt['name']):
        assert opt['logger'].get('use_tb_logger') is True, ('should turn on tensorboard when using wandb')
        init_wandb_logger(opt)
    tb_logger = None
    if opt['logger'].get('use_tb_logger') and 'debug' not in opt['name']:
        tb_logger = init_tb_logger(log_dir=osp.join(opt['root_path'], 'tb_logger', opt['name']))
    return tb_logger


def create_train_val_dataloader(opt, logger):
    # create train and val dataloaders
    train_loader, val_loaders = None, []
    for phase, dataset_opt in opt['datasets'].items():
        if phase == 'train':
            dataset_enlarge_ratio = dataset_opt.get('dataset_enlarge_ratio', 1)
            train_set = build_dataset(dataset_opt)
            train_sampler = EnlargedSampler(train_set, opt['world_size'], opt['rank'], dataset_enlarge_ratio)
            train_loader = build_dataloader(
                train_set,
                dataset_opt,
                num_gpu=opt['num_gpu'],
                dist=opt['dist'],
                sampler=train_sampler,
                seed=opt['manual_seed'])

            num_iter_per_epoch = math.ceil(
                len(train_set) * dataset_enlarge_ratio / (dataset_opt['batch_size_per_gpu'] * opt['world_size']))
            total_iters = int(opt['train']['total_iter'])
            total_epochs = math.ceil(total_iters / (num_iter_per_epoch))
            logger.info('Training statistics:'
                        f'\n\tNumber of train images: {len(train_set)}'
                        f'\n\tDataset enlarge ratio: {dataset_enlarge_ratio}'
                        f'\n\tBatch size per gpu: {dataset_opt["batch_size_per_gpu"]}'
                        f'\n\tWorld size (gpu number): {opt["world_size"]}'
                        f'\n\tRequire iter number per epoch: {num_iter_per_epoch}'
                        f'\n\tTotal epochs: {total_epochs}; iters: {total_iters}.')
        elif phase.split('_')[0] == 'val':
            val_set = build_dataset(dataset_opt)
            val_loader = build_dataloader(
                val_set, dataset_opt, num_gpu=opt['num_gpu'], dist=opt['dist'], sampler=None, seed=opt['manual_seed'])
            logger.info(f'Number of val images/folders in {dataset_opt["name"]}: {len(val_set)}')
            val_loaders.append(val_loader)
        else:
            raise ValueError(f'Dataset phase {phase} is not recognized.')

    return train_loader, train_sampler, val_loaders, total_epochs, total_iters


def load_resume_state(opt):
    resume_state_path = None
    if opt['auto_resume']:
        state_path = osp.join('experiments', opt['name'], 'training_states')
        if osp.isdir(state_path):
            states = list(scandir(state_path, suffix='state', recursive=False, full_path=False))
            if len(states) != 0:
                states = [float(v.split('.state')[0]) for v in states]
                resume_state_path = osp.join(state_path, f'{max(states):.0f}.state')
                opt['path']['resume_state'] = resume_state_path
    else:
        if opt['path'].get('resume_state'):
            resume_state_path = opt['path']['resume_state']

    if resume_state_path is None:
        resume_state = None
    else:
        device_id = torch.cuda.current_device()
        resume_state = torch.load(resume_state_path, map_location=lambda storage, loc: storage.cuda(device_id))
        check_resume(opt, resume_state['iter'])
    return resume_state


def train_pipeline(root_path):
    # parse options, set distributed setting, set random seed
    opt, args = parse_options(root_path, is_train=True)
    opt['root_path'] = root_path

    torch.backends.cudnn.benchmark = True
    # torch.backends.cudnn.deterministic = True

    # load resume states if necessary
    resume_state = load_resume_state(opt)
    # mkdir for experiments and logger
    if resume_state is None:
        make_exp_dirs(opt)
        if opt['logger'].get('use_tb_logger') and 'debug' not in opt['name'] and opt['rank'] == 0:
            mkdir_and_rename(osp.join(opt['root_path'], 'tb_logger', opt['name']))

    # copy the yml file to the experiment root
    copy_opt_file(args.opt, opt['path']['experiments_root'])

    # WARNING: should not use get_root_logger in the above codes, including the called functions
    # Otherwise the logger will not be properly initialized
    log_file = osp.join(opt['path']['log'], f"train_{opt['name']}_{get_time_str()}.log")
    logger = get_root_logger(logger_name='basicsr', log_level=logging.INFO, log_file=log_file)
    logger.info(get_env_info())
    logger.info(dict2str(opt))
    # initialize wandb and tb loggers
    tb_logger = init_tb_loggers(opt)

    # create train and validation dataloaders
    result = create_train_val_dataloader(opt, logger)
    train_loader, train_sampler, val_loaders, total_epochs, total_iters = result

    # create model
    model = build_model(opt)
    if resume_state:  # resume training
        model.resume_training(resume_state)  # handle optimizers and schedulers
        logger.info(f"Resuming training from epoch: {resume_state['epoch']}, iter: {resume_state['iter']}.")
        start_epoch = resume_state['epoch']
        current_iter = resume_state['iter']
    else:
        start_epoch = 0
        current_iter = 0

    # create message logger (formatted outputs)
    msg_logger = MessageLogger(opt, current_iter, tb_logger)

    # dataloader prefetcher
    prefetch_mode = opt['datasets']['train'].get('prefetch_mode')
    if prefetch_mode is None or prefetch_mode == 'cpu':
        prefetcher = CPUPrefetcher(train_loader)
    elif prefetch_mode == 'cuda':
        prefetcher = CUDAPrefetcher(train_loader, opt)
        logger.info(f'Use {prefetch_mode} prefetch dataloader')
        if opt['datasets']['train'].get('pin_memory') is not True:
            raise ValueError('Please set pin_memory=True for CUDAPrefetcher.')
    else:
        raise ValueError(f"Wrong prefetch_mode {prefetch_mode}. Supported ones are: None, 'cuda', 'cpu'.")

    # training
    logger.info(f'Start training from epoch: {start_epoch}, iter: {current_iter}')
    data_timer, iter_timer = AvgTimer(), AvgTimer()
    start_time = time.time()

    for epoch in range(start_epoch, total_epochs + 1):
        train_sampler.set_epoch(epoch)
        prefetcher.reset()
        train_data = prefetcher.next()

        while train_data is not None:
            data_timer.record()

            current_iter += 1
            if current_iter > total_iters:
                break
            # update learning rate
            model.update_learning_rate(current_iter, warmup_iter=opt['train'].get('warmup_iter', -1))
            # training
            model.feed_data(train_data)
            model.optimize_parameters(current_iter)
            iter_timer.record()
            if current_iter == 1:
                # reset start time in msg_logger for more accurate eta_time
                # not work in resume mode
                msg_logger.reset_start_time()
            # log
            if current_iter % opt['logger']['print_freq'] == 0:
                log_vars = {'epoch': epoch, 'iter': current_iter}
                log_vars.update({'lrs': model.get_current_learning_rate()})
                log_vars.update({'time': iter_timer.get_avg_time(), 'data_time': data_timer.get_avg_time()})
                log_vars.update(model.get_current_log())
                msg_logger(log_vars)

            # save models and training states
            if current_iter % opt['logger']['save_checkpoint_freq'] == 0:
                logger.info('Saving models and training states.')
                model.save(epoch, current_iter)

            # validation
            if opt.get('val') is not None and (current_iter % opt['val']['val_freq'] == 0):
                if len(val_loaders) > 1:
                    logger.warning('Multiple validation datasets are *only* supported by SRModel.')
                for val_loader in val_loaders:
                    model.validation(val_loader, current_iter, tb_logger, opt['val']['save_img'])

            data_timer.start()
            iter_timer.start()
            train_data = prefetcher.next()
        # end of iter

    # end of epoch

    consumed_time = str(datetime.timedelta(seconds=int(time.time() - start_time)))
    logger.info(f'End of training. Time consumed: {consumed_time}')
    logger.info('Save the latest model.')
    model.save(epoch=-1, current_iter=-1)  # -1 stands for the latest
    if opt.get('val') is not None:
        for val_loader in val_loaders:
            model.validation(val_loader, current_iter, tb_logger, opt['val']['save_img'])
    if tb_logger:
        tb_logger.close()


if __name__ == '__main__':
    root_path = osp.abspath(osp.join(__file__, osp.pardir, osp.pardir))
    train_pipeline(root_path)