File size: 3,559 Bytes
542c815
3f8e328
542c815
 
 
a888400
d6e753e
 
 
8a357d1
542c815
4f91b95
949892a
542c815
 
 
 
 
 
 
 
 
 
988f91c
 
542c815
 
 
fdc77c7
542c815
 
1605763
542c815
 
 
 
 
 
 
 
 
70974c3
542c815
 
 
 
 
 
 
70974c3
542c815
 
 
949892a
542c815
58b6ce5
542c815
9cd1858
db25ffe
542c815
 
d909bca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
542c815
d909bca
 
 
 
542c815
d909bca
 
c530952
d909bca
c530952
 
 
 
 
 
 
 
7a7235f
d909bca
9cd1858
 
 
d909bca
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import numpy as np
import torch
import torch.nn.functional as F
from torchvision.transforms.functional import normalize
import gradio as gr
from gradio_imageslider import ImageSlider
from briarmbg import BriaRMBG
import PIL
from PIL import Image
from typing import Tuple

net=BriaRMBG()
model_path = "./model1.pth"
if torch.cuda.is_available():
    net.load_state_dict(torch.load(model_path))
    net=net.cuda()
else:
    net.load_state_dict(torch.load(model_path,map_location="cpu"))
net.eval() 

    
def resize_image(image):
    image = image.convert('RGB')
    model_input_size = (1024, 1024)
    image = image.resize(model_input_size, Image.BILINEAR)
    return image


def process(image):

    # prepare input
    orig_image = Image.fromarray(image)
    w,h = orig_im_size = orig_image.size
    image = resize_image(orig_image)
    im_np = np.array(image)
    im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2,0,1)
    im_tensor = torch.unsqueeze(im_tensor,0)
    im_tensor = torch.divide(im_tensor,255.0)
    im_tensor = normalize(im_tensor,[0.5,0.5,0.5],[1.0,1.0,1.0])
    if torch.cuda.is_available():
        im_tensor=im_tensor.cuda()

    #inference
    result=net(im_tensor)
    # post process
    result = torch.squeeze(F.interpolate(result[0][0], size=(h,w), mode='bilinear') ,0)
    ma = torch.max(result)
    mi = torch.min(result)
    result = (result-mi)/(ma-mi)    
    # image to pil
    im_array = (result*255).cpu().data.numpy().astype(np.uint8)
    pil_im = Image.fromarray(np.squeeze(im_array))
    # paste the mask on the original image
    new_im = Image.new("RGBA", pil_im.size, (0,0,0,0))
    new_im.paste(orig_image, mask=pil_im)
    new_orig_image = new_orig_image.convert('RGBA')

    # return new_im
    return [orig_image, new_im]


# block = gr.Blocks().queue()

# with block:
#     gr.Markdown("## BRIA RMBG 1.4")
#     gr.HTML('''
#       <p style="margin-bottom: 10px; font-size: 94%">
#         This is a demo for BRIA RMBG 1.4 that using
#         <a href="https://huggingface.co/briaai/RMBG-1.4" target="_blank">BRIA RMBG-1.4 image matting model</a> as backbone. 
#       </p>
#     ''')
#     with gr.Row():
#         with gr.Column():
#             input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam
#             # input_image = gr.Image(sources=None, type="numpy") # None for upload, ctrl+v and webcam
#             run_button = gr.Button(value="Run")
            
#         with gr.Column():
#             result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[1], height='auto')
#     ips = [input_image]
#     run_button.click(fn=process, inputs=ips, outputs=[result_gallery])

# block.launch(debug = True)

# block = gr.Blocks().queue()

gr.Markdown("## BRIA RMBG 1.4")
gr.HTML('''
  <p style="margin-bottom: 10px; font-size: 94%">
    This is a demo for BRIA RMBG 1.4 that using
    <a href="https://huggingface.co/briaai/RMBG-1.4" target="_blank">BRIA RMBG-1.4 image matting model</a> as backbone. 
  </p>
''')
title = "Background Removal"
description = "Remove background from any image"
examples = [['./input.jpg'],]
output = ImageSlider(position=0.5,label='Image without background', type="pil", show_download_button=True)
demo = gr.Interface(fn=process,inputs="image", outputs=output, examples=examples, title=title, description=description)
# demo = gr.Interface(fn=process,inputs="image", outputs="image", examples=examples, title=title, description=description)

if __name__ == "__main__":
    demo.launch(share=False)