File size: 3,559 Bytes
542c815 3f8e328 542c815 a888400 d6e753e 8a357d1 542c815 4f91b95 949892a 542c815 988f91c 542c815 fdc77c7 542c815 1605763 542c815 70974c3 542c815 70974c3 542c815 949892a 542c815 58b6ce5 542c815 9cd1858 db25ffe 542c815 d909bca 542c815 d909bca 542c815 d909bca c530952 d909bca c530952 7a7235f d909bca 9cd1858 d909bca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
import numpy as np
import torch
import torch.nn.functional as F
from torchvision.transforms.functional import normalize
import gradio as gr
from gradio_imageslider import ImageSlider
from briarmbg import BriaRMBG
import PIL
from PIL import Image
from typing import Tuple
net=BriaRMBG()
model_path = "./model1.pth"
if torch.cuda.is_available():
net.load_state_dict(torch.load(model_path))
net=net.cuda()
else:
net.load_state_dict(torch.load(model_path,map_location="cpu"))
net.eval()
def resize_image(image):
image = image.convert('RGB')
model_input_size = (1024, 1024)
image = image.resize(model_input_size, Image.BILINEAR)
return image
def process(image):
# prepare input
orig_image = Image.fromarray(image)
w,h = orig_im_size = orig_image.size
image = resize_image(orig_image)
im_np = np.array(image)
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2,0,1)
im_tensor = torch.unsqueeze(im_tensor,0)
im_tensor = torch.divide(im_tensor,255.0)
im_tensor = normalize(im_tensor,[0.5,0.5,0.5],[1.0,1.0,1.0])
if torch.cuda.is_available():
im_tensor=im_tensor.cuda()
#inference
result=net(im_tensor)
# post process
result = torch.squeeze(F.interpolate(result[0][0], size=(h,w), mode='bilinear') ,0)
ma = torch.max(result)
mi = torch.min(result)
result = (result-mi)/(ma-mi)
# image to pil
im_array = (result*255).cpu().data.numpy().astype(np.uint8)
pil_im = Image.fromarray(np.squeeze(im_array))
# paste the mask on the original image
new_im = Image.new("RGBA", pil_im.size, (0,0,0,0))
new_im.paste(orig_image, mask=pil_im)
new_orig_image = new_orig_image.convert('RGBA')
# return new_im
return [orig_image, new_im]
# block = gr.Blocks().queue()
# with block:
# gr.Markdown("## BRIA RMBG 1.4")
# gr.HTML('''
# <p style="margin-bottom: 10px; font-size: 94%">
# This is a demo for BRIA RMBG 1.4 that using
# <a href="https://huggingface.co/briaai/RMBG-1.4" target="_blank">BRIA RMBG-1.4 image matting model</a> as backbone.
# </p>
# ''')
# with gr.Row():
# with gr.Column():
# input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam
# # input_image = gr.Image(sources=None, type="numpy") # None for upload, ctrl+v and webcam
# run_button = gr.Button(value="Run")
# with gr.Column():
# result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[1], height='auto')
# ips = [input_image]
# run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
# block.launch(debug = True)
# block = gr.Blocks().queue()
gr.Markdown("## BRIA RMBG 1.4")
gr.HTML('''
<p style="margin-bottom: 10px; font-size: 94%">
This is a demo for BRIA RMBG 1.4 that using
<a href="https://huggingface.co/briaai/RMBG-1.4" target="_blank">BRIA RMBG-1.4 image matting model</a> as backbone.
</p>
''')
title = "Background Removal"
description = "Remove background from any image"
examples = [['./input.jpg'],]
output = ImageSlider(position=0.5,label='Image without background', type="pil", show_download_button=True)
demo = gr.Interface(fn=process,inputs="image", outputs=output, examples=examples, title=title, description=description)
# demo = gr.Interface(fn=process,inputs="image", outputs="image", examples=examples, title=title, description=description)
if __name__ == "__main__":
demo.launch(share=False) |