Spaces:
Running
Running
File size: 2,031 Bytes
e8bac0f 2db0d53 e8bac0f 2db0d53 e8bac0f 8ce49a6 2db0d53 e8bac0f 2db0d53 83746e4 2db0d53 83746e4 2db0d53 8ce49a6 e83c18e 2db0d53 8ce49a6 2db0d53 83746e4 2db0d53 cde7a7b 2db0d53 a8032bb 2db0d53 8ce49a6 2db0d53 a8032bb a6549b1 2db0d53 a6549b1 2db0d53 8ce49a6 2db0d53 a6549b1 2db0d53 8ce49a6 a6549b1 83746e4 2db0d53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
import gradio as gr
from huggingface_hub import InferenceClient
import os
import requests
# Set up the inference API client
hf_client = InferenceClient("mistralai/Mistral-Nemo-Instruct-2407", token=os.getenv("HF_TOKEN"))
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
system_prefix = """
If the input language is Korean, respond in Korean. If it's English, respond in English.
๋์์ ๋๊ฐ์ง ์ธ์ด๋ฅผ ์ถ๋ ฅํ์ง ๋ง๊ฒ. ๋ฐ๋์ ํ๊ตญ์ด ์ง๋ฌธ์๋ ํ๊ตญ์ด๋ก ๋ต๋ณํ๊ณ , ์์ด ์ง๋ฌธ์๋ ์์ด๋ก๋ง ๋ต๋ณํ๋ผ
"""
messages = [{"role": "system", "content": f"{system_prefix} {system_message}"}] # Add prefix
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in hf_client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
if token is not None:
response += token.strip("") # Remove tokens
yield response
theme = "Nymbo/Nymbo_Theme"
css = """
footer {
visibility: hidden;
}
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="""
You are an AI assistant.
""", label="System Prompt"),
gr.Slider(minimum=1, maximum=2000, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
theme=theme, # Apply theme
css=css # Apply CSS
)
if __name__ == "__main__":
demo.launch() |