File size: 4,497 Bytes
7abf701
 
 
 
 
 
a6021dc
 
5114b0d
7abf701
5114b0d
7abf701
5114b0d
7abf701
 
 
 
 
 
 
 
 
 
a6021dc
 
 
4ff5580
a6021dc
4ff5580
a6021dc
 
7abf701
 
 
 
 
 
 
 
 
 
5114b0d
4ff5580
 
 
 
 
 
 
5114b0d
7abf701
3319cd3
8da4629
 
3319cd3
7abf701
 
a6021dc
7abf701
 
 
4ff5580
7abf701
 
4ff5580
7abf701
3319cd3
7abf701
 
4ff5580
7abf701
4ff5580
7abf701
4ff5580
7abf701
4ff5580
7abf701
 
 
 
 
 
4ff5580
7abf701
 
 
4ff5580
7abf701
 
 
8da4629
7abf701
 
 
4ff5580
7abf701
 
 
8da4629
7abf701
 
 
 
4ff5580
7abf701
 
 
 
 
 
 
a6021dc
 
 
 
7abf701
 
 
a6021dc
 
 
 
 
 
7abf701
4ff5580
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline
from transformers import pipeline

# λ²ˆμ—­ νŒŒμ΄ν”„λΌμΈ 및 ν•˜λ“œμ›¨μ–΄ μ„€μ •
device = "cuda" if torch.cuda.is_available() else "cpu"
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device=device)

dtype = torch.bfloat16
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)

    # ν•œκΈ€ μž…λ ₯ 감지 및 λ²ˆμ—­
    if any('\uAC00' <= char <= '\uD7A3' for char in prompt):
        print("ν•œκ΅­μ–΄ ν”„λ‘¬ν”„νŠΈ λ²ˆμ—­ 쀑...")
        translated_prompt = translator(prompt, max_length=512)[0]['translation_text']
        print("λ²ˆμ—­λœ ν”„λ‘¬ν”„νŠΈ:", translated_prompt)
        prompt = translated_prompt

    image = pipe(
            prompt = prompt,
            width = width,
            height = height,
            num_inference_steps = num_inference_steps,
            generator = generator,
            guidance_scale=0.0
    ).images[0]
    return image, seed

examples = [
    ["[색상: νŒŒλž€μƒ‰] [λ””μžμΈ 컨셉: λ‘œμΌ“] [ν…μŠ€νŠΈ: '세계'] [λ°°κ²½: νŒŒλž€μƒ‰]의 μƒˆλ‘œμš΄ 둜고 λ§Œλ“€κΈ°"],
    ["[색상: νŒŒλž€μƒ‰] [λ””μžμΈ 컨셉: 우주] [ν…μŠ€νŠΈ: 'μ½”μΉ΄μ½œλΌ'] [λ°°κ²½: λ‹€μ±„λ‘œμš΄ 색상]의 μƒˆλ‘œμš΄ 둜고 λ§Œλ“€κΈ°"],   
    ["방패 μœ„μ— μžˆλŠ” κ°„λ‹¨ν•œ 미래적인 카미카제 λ“œλ‘  둜고, λ―Έλ‹ˆλ©€λ¦¬μŠ€ν‹±, 벑터, 2D, λ‹¨μˆœν•œ μ„ , 흰색 λ°°κ²½ --v 4"],
    ["[색상: νŒŒλž€μƒ‰] [λ””μžμΈ 컨셉: μ‚°] [ν…μŠ€νŠΈ: 'abc@gmail.com'] [λ°°κ²½: 빨간색]의 μƒˆλ‘œμš΄ 둜고 λ§Œλ“€κΈ°"],
    ["[색상: νŒŒλž€μƒ‰] [λ””μžμΈ 컨셉: μ‚¬λžŒ] [ν…μŠ€νŠΈ: 'ABC.COM'] [λ°°κ²½: λ…Έλž€μƒ‰]의 μƒˆλ‘œμš΄ 둜고 λ§Œλ“€κΈ°"],
    ["[색상: νŒŒλž€μƒ‰] [λ””μžμΈ 컨셉: 집] [ν…μŠ€νŠΈ: 'T.010-1234-1234'] [λ°°κ²½: λ‹€μ±„λ‘œμš΄ 색상]의 μƒˆλ‘œμš΄ 둜고 λ§Œλ“€κΈ°"],    
    ["[색상: νŒŒλž€μƒ‰] [λ””μžμΈ 컨셉: μ‚¬μž] [ν…μŠ€νŠΈ: '좕ꡬ 클럽'] [λ°°κ²½: μ΄ˆλ‘μƒ‰]의 μƒˆλ‘œμš΄ 둜고 λ§Œλ“€κΈ°"]
]

css = """
footer {
    visibility: hidden;
}
"""

with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo:
    with gr.Column(elem_id="col-container"):
        with gr.Row():
            prompt = gr.Text(
                label="ν”„λ‘¬ν”„νŠΈ",
                show_label=False,
                max_lines=1,
                placeholder="ν”„λ‘¬ν”„νŠΈλ₯Ό μž…λ ₯ν•˜μ„Έμš”",
                container=False,
                elem_id="prompt"
            )

            run_button = gr.Button("μ‹€ν–‰", scale=0)

        result = gr.Image(label="κ²°κ³Ό", show_label=False, elem_id="result")

        with gr.Accordion("κ³ κΈ‰ μ„€μ •", open=False, elem_id="advanced-settings"):
            seed = gr.Slider(
                label="μ‹œλ“œ",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="μ‹œλ“œ λ¬΄μž‘μœ„ν™”", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="λ„ˆλΉ„",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )

                height = gr.Slider(
                    label="높이",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )

            with gr.Row():
                num_inference_steps = gr.Slider(
                    label="μΆ”λ‘  단계 수",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=4,
                )

        gr.Examples(
            examples=examples,
            fn=infer,
            inputs=[prompt],
            outputs=[result, seed],
            cache_examples="lazy"
        )

        gr.on(
            triggers=[run_button.click, prompt.submit],
            fn=infer,
            inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps],
            outputs=[result, seed]
        )

demo.launch()