Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,497 Bytes
7abf701 a6021dc 5114b0d 7abf701 5114b0d 7abf701 5114b0d 7abf701 a6021dc 4ff5580 a6021dc 4ff5580 a6021dc 7abf701 5114b0d 4ff5580 5114b0d 7abf701 3319cd3 8da4629 3319cd3 7abf701 a6021dc 7abf701 4ff5580 7abf701 4ff5580 7abf701 3319cd3 7abf701 4ff5580 7abf701 4ff5580 7abf701 4ff5580 7abf701 4ff5580 7abf701 4ff5580 7abf701 4ff5580 7abf701 8da4629 7abf701 4ff5580 7abf701 8da4629 7abf701 4ff5580 7abf701 a6021dc 7abf701 a6021dc 7abf701 4ff5580 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline
from transformers import pipeline
# λ²μ νμ΄νλΌμΈ λ° νλμ¨μ΄ μ€μ
device = "cuda" if torch.cuda.is_available() else "cpu"
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device=device)
dtype = torch.bfloat16
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
# νκΈ μ
λ ₯ κ°μ§ λ° λ²μ
if any('\uAC00' <= char <= '\uD7A3' for char in prompt):
print("νκ΅μ΄ ν둬ννΈ λ²μ μ€...")
translated_prompt = translator(prompt, max_length=512)[0]['translation_text']
print("λ²μλ ν둬ννΈ:", translated_prompt)
prompt = translated_prompt
image = pipe(
prompt = prompt,
width = width,
height = height,
num_inference_steps = num_inference_steps,
generator = generator,
guidance_scale=0.0
).images[0]
return image, seed
examples = [
["[μμ: νλμ] [λμμΈ μ»¨μ
: λ‘μΌ] [ν
μ€νΈ: 'μΈκ³'] [λ°°κ²½: νλμ]μ μλ‘μ΄ λ‘κ³ λ§λ€κΈ°"],
["[μμ: νλμ] [λμμΈ μ»¨μ
: μ°μ£Ό] [ν
μ€νΈ: 'μ½μΉ΄μ½λΌ'] [λ°°κ²½: λ€μ±λ‘μ΄ μμ]μ μλ‘μ΄ λ‘κ³ λ§λ€κΈ°"],
["λ°©ν¨ μμ μλ κ°λ¨ν λ―Έλμ μΈ μΉ΄λ―ΈμΉ΄μ λλ‘ λ‘κ³ , λ―Έλλ©λ¦¬μ€ν±, 벑ν°, 2D, λ¨μν μ , ν°μ λ°°κ²½ --v 4"],
["[μμ: νλμ] [λμμΈ μ»¨μ
: μ°] [ν
μ€νΈ: 'abc@gmail.com'] [λ°°κ²½: λΉ¨κ°μ]μ μλ‘μ΄ λ‘κ³ λ§λ€κΈ°"],
["[μμ: νλμ] [λμμΈ μ»¨μ
: μ¬λ] [ν
μ€νΈ: 'ABC.COM'] [λ°°κ²½: λ
Έλμ]μ μλ‘μ΄ λ‘κ³ λ§λ€κΈ°"],
["[μμ: νλμ] [λμμΈ μ»¨μ
: μ§] [ν
μ€νΈ: 'T.010-1234-1234'] [λ°°κ²½: λ€μ±λ‘μ΄ μμ]μ μλ‘μ΄ λ‘κ³ λ§λ€κΈ°"],
["[μμ: νλμ] [λμμΈ μ»¨μ
: μ¬μ] [ν
μ€νΈ: 'μΆκ΅¬ ν΄λ½'] [λ°°κ²½: μ΄λ‘μ]μ μλ‘μ΄ λ‘κ³ λ§λ€κΈ°"]
]
css = """
footer {
visibility: hidden;
}
"""
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo:
with gr.Column(elem_id="col-container"):
with gr.Row():
prompt = gr.Text(
label="ν둬ννΈ",
show_label=False,
max_lines=1,
placeholder="ν둬ννΈλ₯Ό μ
λ ₯νμΈμ",
container=False,
elem_id="prompt"
)
run_button = gr.Button("μ€ν", scale=0)
result = gr.Image(label="κ²°κ³Ό", show_label=False, elem_id="result")
with gr.Accordion("κ³ κΈ μ€μ ", open=False, elem_id="advanced-settings"):
seed = gr.Slider(
label="μλ",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="μλ 무μμν", value=True)
with gr.Row():
width = gr.Slider(
label="λλΉ",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="λμ΄",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="μΆλ‘ λ¨κ³ μ",
minimum=1,
maximum=50,
step=1,
value=4,
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt],
outputs=[result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps],
outputs=[result, seed]
)
demo.launch() |