File size: 4,676 Bytes
9887d4c
 
 
099c99b
9887d4c
ef1c0b9
9887d4c
 
 
93fd450
af079bb
93fd450
 
 
 
af079bb
b3b1ca1
b39d4ca
7acfd95
 
9887d4c
93fd450
 
af079bb
93fd450
 
af079bb
9887d4c
 
 
ef1c0b9
f8ac431
9887d4c
 
 
 
 
 
 
 
 
5072f90
 
9887d4c
 
 
 
 
5072f90
9887d4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
621bbdc
80f499e
25f07f0
9887d4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
099c99b
9887d4c
 
 
 
 
 
 
099c99b
9887d4c
 
 
 
 
 
 
 
 
099c99b
9887d4c
 
 
 
 
099c99b
9887d4c
621bbdc
9887d4c
 
 
 
4dd28e3
 
9887d4c
 
f8ac431
 
9887d4c
 
5072f90
9887d4c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import gradio as gr
import numpy as np
import random
from diffusers import AuraFlowPipeline
import torch
import spaces

device = "cuda" if torch.cuda.is_available() else "cpu"

#torch.set_float32_matmul_precision("high")

#torch._inductor.config.conv_1x1_as_mm = True
#torch._inductor.config.coordinate_descent_tuning = True
#torch._inductor.config.epilogue_fusion = False
#torch._inductor.config.coordinate_descent_check_all_directions = True

pipe = AuraFlowPipeline.from_pretrained(
	"fal/AuraFlow",
    torch_dtype=torch.float16
).to("cuda")

#pipe.transformer.to(memory_format=torch.channels_last)
#pipe.vae.to(memory_format=torch.channels_last)

#pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
#pipe.vae.decode = torch.compile(pipe.vae.decode, mode="max-autotune", fullgraph=True)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
        
    generator = torch.Generator().manual_seed(seed)
    
    image = pipe(
        prompt = prompt, 
        negative_prompt = negative_prompt,
        width=width,
        height=height,
        guidance_scale = guidance_scale, 
        num_inference_steps = num_inference_steps, 
        generator = generator
    ).images[0] 
    
    return image, seed

examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

if torch.cuda.is_available():
    power_device = "GPU"
else:
    power_device = "CPU"

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # AuraFlow 0.1
        Demo of the [AuraFlow 0.1](https://huggingface.co/fal/AuraFlow) 5.6B parameters open source diffusion transformer model
        [[blog](https://blog.fal.ai/auraflow/)] [[model](https://huggingface.co/fal/AuraFlow)] [[fal](https://fal.ai/models/fal-ai/aura-flow)]
        """)
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
            )
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
            with gr.Row():
                
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=5.0,
                )
                
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28,
                )
        
        gr.Examples(
            examples = examples,
            inputs = [prompt],
            cache_examples=False
        )

    gr.on(
        triggers=[run_button.click, prompt.submit, negative_prompt.submit],
        fn = infer,
        inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs = [result, seed]
    )

demo.queue().launch()