Spaces:
Running
Running
File size: 80,693 Bytes
23750f5 4aa2391 23750f5 4aa2391 23750f5 4aa2391 23750f5 4aa2391 23750f5 4aa2391 23750f5 4aa2391 23750f5 b618915 23750f5 b618915 23750f5 b618915 23750f5 36be720 23750f5 36be720 23750f5 36be720 23750f5 36be720 23750f5 b618915 23750f5 b618915 23750f5 b618915 23750f5 b618915 23750f5 b618915 23750f5 b618915 23750f5 b618915 23750f5 b618915 23750f5 b618915 23750f5 5a5e6da 23750f5 5a5e6da 23750f5 c43e155 23750f5 c43e155 23750f5 bfc12f9 23750f5 5a5e6da 23750f5 5a5e6da 8e3f411 23750f5 5a5e6da 8e3f411 e02bb0c 5a5e6da 8e3f411 e02bb0c 8e3f411 5a5e6da 23750f5 4aa2391 23750f5 be01745 23750f5 8f06fb2 4aa2391 23750f5 4aa2391 be01745 23750f5 36be720 23750f5 40b5fd0 23750f5 40b5fd0 23750f5 4aa2391 be01745 23750f5 be01745 23750f5 be01745 23750f5 be01745 23750f5 4aa2391 23750f5 40b5fd0 23750f5 0462402 23750f5 0462402 be01745 0462402 be01745 0462402 40b5fd0 0462402 40b5fd0 0462402 40b5fd0 4aa2391 701592e 23750f5 4aa2391 701592e 23750f5 701592e 0462402 701592e 0462402 701592e 0462402 4aa2391 23750f5 4aa2391 23750f5 0462402 23750f5 0462402 23750f5 0462402 23750f5 0462402 23750f5 0462402 23750f5 0462402 23750f5 0462402 23750f5 0462402 4aa2391 23750f5 0462402 23750f5 0462402 23750f5 0462402 23750f5 0462402 23750f5 4aa2391 8b50388 4aa2391 8b50388 4aa2391 8b50388 4aa2391 8b50388 4aa2391 8b50388 4aa2391 8b50388 4aa2391 0462402 be01745 0462402 be01745 b03841e 4aa2391 be01745 4aa2391 be01745 701592e 23750f5 4aa2391 701592e 4aa2391 23750f5 0462402 23750f5 0462402 23750f5 0462402 4aa2391 be01745 0462402 be01745 0462402 23750f5 0462402 be01745 0462402 23750f5 0462402 23750f5 0462402 23750f5 0462402 23750f5 0462402 23750f5 0462402 23750f5 0462402 23750f5 0462402 23750f5 be01745 23750f5 0462402 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 |
import gradio as gr
from google import genai
from google.genai import types
import PyPDF2
import os
import json
import re
import io
from datetime import datetime
from huggingface_hub import HfApi, create_repo, upload_file, list_repo_files
import pandas as pd
from pathlib import Path
import tempfile
import shutil
try:
import pdfplumber
PDFPLUMBER_AVAILABLE = True
except ImportError:
PDFPLUMBER_AVAILABLE = False
# Analytics 비활성화
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
# Gemini API 설정
GEMINI_API_KEY = os.getenv("GEMINI_API")
HF_TOKEN = os.getenv("HF_TOKEN")
DATASET_NAME = "agi-novel-leaderboard"
GLOBAL_DATASET = "fantaxy/novel-evaluations"
ADMIN_USERNAME = "fantaxy"
# Language content dictionary
LANGUAGE_CONTENT = {
"en": {
"title": "🏆 AGI Turing Test Leaderboard: Novel Creation",
"guide_tab": "📖 GUIDE",
"purpose_title": "🎯 Purpose",
"purpose_desc": """This system evaluates whether **AGI (Artificial General Intelligence) can create novels at a level equivalent to human authors** through a comprehensive Turing test.""",
"why_title": "🌟 Why Novel Creation?",
"why_desc": """### 1. Narrative Generation as Integrated Stress Test
* Long-form fiction requires **long-term memory, complex plotting, emotional expression, ethical filtering, and originality** simultaneously
* These multiple sub-abilities are difficult to verify simultaneously through other single tasks
### 2. Direct Comparison with Human Culture
* **Social validation channels** like literary awards and reader reviews already exist, allowing intuitive performance ranking
* Novel creation represents the pinnacle of linguistic and creative capabilities
### 3. AGI Community Consensus
* The latest AGI evaluation community considers **"language and creative ability"** as the core indicator of human-level intelligence
* With the emergence of benchmarks like WebNovelBench and EQ-Bench Longform, the ability to consistently and creatively complete works of hundreds of thousands of words has become the representative test of AGI difficulty""",
"criteria_title": "🔍 Evaluation Criteria",
"criteria_desc": """- **Literary Completion**: Objective evaluation from Nobel Prize level (9.1 points) to draft level (0.1 points)
- **Creative Persistence**: Ability to create long-form works over 5,000 words (0.1 point bonus per 1,000 words, max 0.9 points)
- **Comprehensive Score**: Base score + Volume bonus = Maximum 10 points
- **Evaluation AI**: Using Gemini 2.5 Pro model
- **Plagiarism Check**: Human-written works will receive 0 points (except admin samples)""",
"login_required": "### ❌ Login Required!\n\nPlease click the 'Sign in with Hugging Face' button at the top to login.\n\n",
"leaderboard_tab": "🏆 Leaderboard",
"submit_tab": "📝 Submit Work",
"history_tab": "📚 My Submission History",
"leaderboard_header": """<div class="leaderboard-header">
<h2>🌟 AGI Literary Creation Capability Leaderboard 🌟</h2>
<p>Ranking of AIs with human-level novel creation abilities</p>
</div>""",
"simple_leaderboard_header": """<div class="simple-header">
<h3>🏆 Top AI Novel Rankings</h3>
</div>""",
"refresh_btn": "🔄 Refresh Leaderboard",
"evaluate_btn": "🔍 Start Evaluation",
"history_btn": "🔄 Refresh History",
"upload_label": "📄 Upload PDF File",
"llm_url_label": "🔗 LLM Service URL (Optional)",
"llm_url_placeholder": "Enter the URL of LLM service used to generate this work",
"is_human_sample_label": "📚 Human Sample (Admin Only)",
"result_label": "### 📋 Evaluation results will be displayed here\n\n🔐 **Login required!**\n\nPlease click 'Sign in with Hugging Face' button at the top to login.",
"score_system": """### 📊 Scoring System
- **Base Score**: 0.1-10 points (Literary quality evaluation)
- **Bonus Score**: Up to 0.9 points (0.1 points per 1,000 words over 5,000)
- **Final Score**: Base + Bonus = Maximum 10 points
- **Plagiarism = 0 points**: Human-written works detected as plagiarism receive 0 points""",
"grade_criteria": """### 🏅 Grade Criteria
- **10.0 points**: Perfect literary achievement ✨
- **9.0+ points**: Nobel Prize level creative ability
- **8.0+ points**: World literature classic level
- **7.0+ points**: Bestselling author level
- **5.0+ points**: Professional writer level
- **3.0+ points**: Amateur writer level
- **Below 3.0**: Draft level
- **0 points**: Plagiarism or human-written work""",
"requirements": """### 📋 Minimum Requirements
- **Minimum 5,000 words** (required)
- **Approximately 7-8+ pages** (A4 standard)
- Complete works beyond short stories
- Synopsis or summaries not accepted
- **Must be AI-generated** (human works = 0 points)""",
"bonus_system": """### 🎁 Bonus Points
- 0.1 points per 1,000 words over 5,000
- Maximum 0.9 additional points
- Example: 13,000 words = +0.8 bonus points""",
"warning": """<div class="warning-box">
<strong>⚠️ Important Notice</strong><br>
Works under 5,000 words will be rejected.<br>
Human-written or plagiarized works will receive 0 points automatically.<br>
AGI test evaluates long-form creation ability. For novels generated with a single prompt, demonstrating AGI minimum/recommended level requires consistent performance of 5.1-6.1 points or higher. Scores of 7.1+ indicate 'ASI (Artificial Superintelligence)' Stage 1, while 8.1+ represents true 'ASI' stage entry.
</div>""",
"evaluation_scale": """### 📌 Evaluation Scale
| Score | Level | Example |
|-------|-------|---------|
| **10.0** | Perfect (Flawless achievement) | All elements perfect |
| **9.1** | Nobel Prize level | *One Hundred Years of Solitude* |
| **8.1** | World literature classic | *Anna Karenina* |
| **7.1** | Global bestseller | *Harry Potter* |
| **6.1** | International literary award | *The Vegetarian* |
| **5.1** | Academy Award screenplay | *Parasite* |
| **4.1** | Commercial success | *Squid Game* |
| **3.1** | Popular domestic work | Local bestsellers |
| **2.1** | General commercial | Genre fiction |
| **1.1** | Web novel | Platform originals |
| **0.1** | Draft | Beginner work |
| **0** | Plagiarism/Human work | Detected non-AI content |""",
"submitter": "### 👤 Submitter: ",
"work_info": "📊 Work Info: ",
"pages": " pages, ",
"words": " words\n",
"volume_bonus": "📈 Volume Bonus: +",
"points": " points (words over 5,000)\n",
"evaluator": "🤖 Evaluation AI: Gemini 2.5 Pro\n\n",
"min_words_error": """### ⚠️ Cannot Evaluate: Insufficient Length
**Current Work Info:**
- 📄 Pages: {pages} pages
- 📝 Words: {words:,} words
**Minimum Requirements:**
- 📝 **5,000+ words** (current: {words:,} words)
- 📄 **~7-8+ pages** (A4 standard)
**AGI Turing Test Standards:**
- Sufficient length is required to evaluate human-level novel creation ability
- Please submit completed works of novella length or longer
Words needed: **{needed:,} words**""",
"plagiarism_detected": """### 🚫 Evaluation Result: PLAGIARISM DETECTED
**Final Score: 0 points**
This work has been identified as:
- Human-written content
- Plagiarized from existing literature
- Not generated by AI
AGI Turing Test evaluates AI's ability to create original novels.
Please submit only AI-generated content.""",
"final_score_title": "### 🏆 Final Score Calculation\n",
"base_score": "- **Base Evaluation Score**: ",
"bonus_score": "- **Volume Bonus**: +",
"final_score": "- **Final Score**: **",
"points_detail": " points (0.1 per 1,000 words, max 0.9)\n",
"max_10": "** (Maximum 10 points)\n\n---\n\n",
"save_success": "✅ ",
"save_error": "⚠️ ",
"rank": "Rank",
"author_id": "Author ID",
"llm_service": "LLM Service",
"final_score_col": "Final Score",
"word_count": "Word Count",
"work_title": "Work Title",
"submit_date": "Submit Date",
"human_sample": "Type",
"download": "Download",
"view_eval": "View",
"history_headers": ["Date/Time", "Filename", "Final Score", "Word Count", "Type", "Evaluation Summary"],
"history_label": "My Submissions (Recent 10)",
"view_evaluation": "View Evaluation",
"download_pdf": "Download PDF",
"close": "Close",
"admin_only": "Admin only feature",
"human_sample_badge": "📚 Human Sample",
"ai_generated_badge": "🤖 AI Generated",
"quick_submit_title": "📝 Quick Submit",
"submit_instructions": "Upload your AI-generated novel (PDF, min 5,000 words) for evaluation"
},
"ko": {
"title": "🏆 AGI 튜링테스트 리더보드: 장편소설 창작",
"guide_tab": "📖 가이드",
"purpose_title": "🎯 목적",
"purpose_desc": """이 시스템은 **AGI(인공일반지능)가 인간 작가와 동등한 수준의 장편소설을 창작할 수 있는지**를 평가하는 튜링테스트입니다.""",
"why_title": "🌟 왜 소설 창작인가?",
"why_desc": """### 1. 서사 생성이 통합 스트레스 테스트
* 장편 소설은 **장기 기억, 복합 플롯, 감정 표현, 윤리 필터, 독창성**을 한 번에 요구합니다
* 이러한 다중 하위 능력은 다른 단일 태스크로는 동시에 검증하기 어렵습니다
### 2. 인간 문화로 직접 비교 가능
* 문학상이나 독자 평가 같은 **사회적 검증 채널**이 이미 존재해 성능을 직관적으로 순위화할 수 있습니다
* 소설 창작은 언어적·창의적 능력의 정점을 나타냅니다
### 3. AGI 커뮤니티 합의
* 최신 AGI 평가 커뮤니티는 **"언어·창작 능력"**을 인간 수준 지능의 핵심 지표로 봅니다
* WebNovelBench·EQ-Bench Longform 등 장편·창작 전용 벤치마크가 등장하면서, 한 모델이 수십만 단어짜리 작품을 얼마나 일관적·창의적으로 완성하느냐가 AGI 난이도의 대표 시험으로 굳어지는 추세입니다""",
"criteria_title": "🔍 평가 기준",
"criteria_desc": """- **문학적 완성도**: 노벨문학상 수준(9.1점)부터 습작 수준(0.1점)까지의 객관적 평가
- **창작 지속성**: 5,000단어 이상의 장편 창작 능력 (1,000단어당 0.1점 보너스, 최대 0.9점)
- **종합 평가**: 기본 점수 + 분량 보너스 = 최대 10점
- **평가 AI**: Gemini 2.5 Pro 모델 사용
- **표절 검사**: 인간이 작성한 작품은 0점 처리 (관리자 샘플 제외)""",
"login_required": "### ❌ 로그인이 필요합니다!\n\n상단의 'Sign in with Hugging Face' 버튼을 클릭하여 로그인해주세요.\n\n",
"leaderboard_tab": "🏆 리더보드",
"submit_tab": "📝 작품 제출",
"history_tab": "📚 내 평가 내역",
"leaderboard_header": """<div class="leaderboard-header">
<h2>🌟 AGI 문학 창작 능력 리더보드 🌟</h2>
<p>인간 수준의 장편소설 창작 능력을 갖춘 AI들의 순위</p>
</div>""",
"simple_leaderboard_header": """<div class="simple-header">
<h3>🏆 최고의 AI 소설 순위</h3>
</div>""",
"refresh_btn": "🔄 리더보드 새로고침",
"evaluate_btn": "🔍 평가 시작",
"history_btn": "🔄 내역 새로고침",
"upload_label": "📄 PDF 파일 업로드",
"llm_url_label": "🔗 LLM 서비스 URL (선택사항)",
"llm_url_placeholder": "이 작품을 생성한 LLM 서비스의 URL을 입력하세요",
"is_human_sample_label": "📚 휴먼 샘플 (관리자 전용)",
"result_label": "### 📋 평가 결과가 여기에 표시됩니다\n\n🔐 **로그인이 필요합니다!**\n\n상단의 'Sign in with Hugging Face' 버튼을 클릭하여 로그인 후 이용해주세요.",
"score_system": """### 📊 점수 체계 설명
- **기본 점수**: 0.1-10점 (문학적 완성도 평가)
- **보너스 점수**: 최대 0.9점 (5,000단어 초과 시 1,000단어당 0.1점)
- **최종 점수**: 기본 + 보너스 = 최대 10점
- **표절 = 0점**: 인간이 작성한 작품으로 판명 시 0점 처리""",
"grade_criteria": """### 🏅 등급 기준
- **10.0점**: 완벽한 문학적 성취 (만점) ✨
- **9.0점 이상**: 노벨문학상 급 창작 능력
- **8.0점 이상**: 세계 문학 고전 수준
- **7.0점 이상**: 베스트셀러 작가 수준
- **5.0점 이상**: 프로 작가 수준
- **3.0점 이상**: 아마추어 작가 수준
- **3.0점 미만**: 습작 수준
- **0점**: 표절 또는 인간 작성 작품""",
"requirements": """### 📋 최소 분량 요구사항
- **최소 5,000단어 이상** (필수)
- **약 7-8페이지 이상** (A4 기준)
- 단편소설 이상의 완성된 작품
- 시놉시스나 요약본 불가
- **AI가 생성한 작품만 가능** (인간 작품 = 0점)""",
"bonus_system": """### 🎁 보너스 점수
- 5,000단어 초과 시 1,000단어당 0.1점
- 최대 0.9점까지 추가 가능
- 예: 13,000단어 = +0.8점 보너스""",
"warning": """<div class="warning-box">
<strong>⚠️ 주의사항</strong><br>
5,000단어 미만의 작품은 평가가 거부됩니다.<br>
인간이 작성했거나 표절한 작품은 자동으로 0점 처리됩니다.<br>
AGI 테스트는 장편 창작 능력을 평가합니다. 단 한번의 프롬프트만으로 생성된 중편 이상 소설에 대한 평가시 AGI의 최소/권고 수준은 5.1점 ~ 6.1점 이상을 지속 유지하는 생성 능력을 입증해야 합니다. 7.1점 이상의 경우 'ASI(초인공지능)' 1단계로 평가할 수 있으며, 8.1점 이상부터는 진정한 'ASI' 단계 진입을 의미합니다.
</div>""",
"evaluation_scale": """### 📌 평가 척도
| 점수 | 수준 | 예시 |
|------|------|------|
| **10점** | 만점 (완벽한 문학적 성취) | 모든 요소가 완벽한 작품 |
| **9.1점** | 노벨문학상 수준 | 『백년 동안의 고독』 |
| **8.1점** | 세계 문학사 고전 | 『안나 카레니나』 |
| **7.1점** | 세계적 베스트셀러 | 『해리포터』 |
| **6.1점** | 국제 문학상 수상작 | 『채식주의자』 |
| **5.1점** | 아카데미 각본상 | 『기생충』 |
| **4.1점** | 상업적 성공작 | 『오징어 게임』 |
| **3.1점** | 국내 인기작 | 『82년생 김지영』 |
| **2.1점** | 일반 상업 작품 | 장르 소설 |
| **1.1점** | 웹소설 | 웹 플랫폼 작품 |
| **0.1점** | 습작 | 초보 작가 작품 |
| **0점** | 표절/인간 작품 | 비AI 콘텐츠 감지 |""",
"submitter": "### 👤 제출자: ",
"work_info": "📊 작품 정보: ",
"pages": "페이지, ",
"words": "단어\n",
"volume_bonus": "📈 분량 보너스: +",
"points": "점 (5000단어 초과분)\n",
"evaluator": "🤖 평가 AI: Gemini 2.5 Pro\n\n",
"min_words_error": """### ⚠️ 평가 불가: 작품 분량 부족
**현재 작품 정보:**
- 📄 페이지 수: {pages}페이지
- 📝 단어 수: {words:,}단어
**최소 요구사항:**
- 📝 **5,000단어 이상** (현재: {words:,}단어)
- 📄 **약 7-8페이지 이상** (A4 기준)
**AGI 튜링테스트 기준:**
- 인간 수준의 장편소설 창작 능력을 평가하기 위해서는 충분한 분량이 필요합니다
- 단편소설이나 중편소설 이상의 완성된 작품을 제출해주세요
부족한 단어 수: **{needed:,}단어**""",
"plagiarism_detected": """### 🚫 평가 결과: 표절 감지
**최종 점수: 0점**
이 작품은 다음으로 식별되었습니다:
- 인간이 작성한 콘텐츠
- 기존 문학 작품에서 표절
- AI가 생성하지 않음
AGI 튜링테스트는 AI의 독창적인 소설 창작 능력을 평가합니다.
AI가 생성한 콘텐츠만 제출해주세요.""",
"final_score_title": "### 🏆 최종 점수 산정\n",
"base_score": "- **기본 평가 점수**: ",
"bonus_score": "- **분량 보너스**: +",
"final_score": "- **최종 점수**: **",
"points_detail": "점 (1000단어당 0.1점, 최대 0.9점)\n",
"max_10": "점** (최대 10점)\n\n---\n\n",
"save_success": "✅ ",
"save_error": "⚠️ ",
"rank": "순위",
"author_id": "작성자 ID",
"llm_service": "LLM 서비스",
"final_score_col": "최종점수",
"word_count": "단어수",
"work_title": "작품명",
"submit_date": "제출일시",
"human_sample": "유형",
"download": "다운로드",
"view_eval": "평가보기",
"history_headers": ["날짜/시간", "파일명", "최종점수", "단어수", "유형", "평가 요약"],
"history_label": "나의 제출 내역 (최근 10개)",
"view_evaluation": "평가 보기",
"download_pdf": "PDF 다운로드",
"close": "닫기",
"admin_only": "관리자 전용 기능",
"human_sample_badge": "📚 휴먼 샘플",
"ai_generated_badge": "🤖 AI 생성",
"quick_submit_title": "📝 빠른 제출",
"submit_instructions": "AI가 생성한 소설(PDF, 최소 5,000단어)을 업로드하여 평가를 받으세요"
}
}
# Evaluation criteria in both languages
EVALUATION_CRITERIA = {
"en": """
📌 **10 points - Perfect Score (Flawless literary achievement)**
* Impeccable level in all evaluation elements.
* Creative work that surpasses the highest level of human works.
📌 **9.1 points - Nobel Prize in Literature level**
* Deals with deep philosophical insights and universal humanity.
* Example: Gabriel García Márquez "One Hundred Years of Solitude"
📌 **8.1 points - World literature classic level**
* Works that are continuously read and studied across time and culture.
* Example: Tolstoy "Anna Karenina", Hemingway "The Old Man and the Sea"
📌 **7.1 points - Global bestselling literary work level**
* Works with both literary merit and commercial appeal with worldwide influence and recognition.
* Example: "Harry Potter" series, "The Lord of the Rings", "The Alchemist"
📌 **6.1 points - Prestigious international literary award winner level**
* Works that have won international literary awards such as the Booker Prize, Pulitzer Prize, Prix Goncourt.
* Example: "The Vegetarian" (Han Kang, Man Booker Prize), "The Road" (Cormac McCarthy, Pulitzer Prize)
📌 **5.1 points - Academy Award for Best Screenplay/Adapted Screenplay level**
* Scripts recognized for excellent story composition, character expression, and philosophical messages.
* Example: "Parasite" (Bong Joon-ho & Han Jin-won), "Eternal Sunshine of the Spotless Mind" (Charlie Kaufman)
📌 **4.1 points - Commercially successful film/drama screenplay level**
* Scripts focused on popularity rather than artistic merit, achieving box office success and public empathy.
* Example: "Squid Game" (Hwang Dong-hyuk), "Avengers" series
📌 **3.1 points - Domestically popular general novel and drama level**
* Works with stable popularity among the public without major social impact.
* Example: Popular domestic bestsellers, weekend drama scripts
📌 **2.1 points - General commercial genre novel and drama script level**
* Entertainment-focused rather than literary value, for mild commercial consumption.
* Example: Most general mystery/romance novels, light weekend drama scripts
📌 **1.1 points - Popular web novel and web drama level**
* Works composed for quick consumption, light and interest-oriented.
* Example: General popular works on web novel platforms
📌 **0.1 points - Aspiring writer/student draft level**
* Basic level story composition, style, character description with low completion.
📌 **0 points - Plagiarism or Human-written work**
* Works detected as written by humans, not AI-generated
* Direct plagiarism from existing literature
""",
"ko": """
📌 **10점 - 만점 (완벽한 문학적 성취)**
* 모든 평가 요소에서 흠잡을 데 없는 수준.
* 인간 최고 수준의 작품을 뛰어넘는 창작물.
📌 **9.1점 - 노벨문학상 수상 작품 수준**
* 깊은 철학적 통찰과 보편적 인간성을 다룸.
* 예시: 가브리엘 가르시아 마르케스 『백년 동안의 고독』
📌 **8.1점 - 세계 문학사에 길이 남는 고전 수준**
* 시대와 문화를 뛰어넘어 지속적으로 읽히고 연구되는 작품.
* 예시: 톨스토이 『안나 카레니나』, 헤밍웨이 『노인과 바다』
📌 **7.1점 - 세계적인 베스트셀러 문학 작품 수준**
* 문학성과 상업성을 동시에 갖추며 전 세계적 영향력과 인지도를 지닌 작품.
* 예시: 『해리포터』 시리즈, 『반지의 제왕』, 『연금술사』
📌 **6.1점 - 권위 있는 국제 문학상 수상 작품 수준**
* 부커상, 퓰리처상, 공쿠르상 등 국제적 문학상을 수상한 작품.
* 예시: 『채식주의자』(한강, 맨부커상), 『로드』(코맥 매카시, 퓰리처상)
📌 **5.1점 - 아카데미 각본상·각색상 수상 영화 각본 수준**
* 뛰어난 이야기 구성, 캐릭터 표현 및 철학적 메시지를 인정받은 각본.
* 예시: 『기생충』(봉준호·한진원), 『이터널 선샤인』(찰리 카우프먼)
📌 **4.1점 - 상업적 흥행 성공 영화·드라마 각본 수준**
* 작품성보다는 대중성에 초점, 흥행과 대중적 공감을 이뤄낸 극본.
* 예시: 『오징어 게임』(황동혁), 『어벤져스』 시리즈
📌 **3.1점 - 국내적으로 인기 있는 일반 소설 및 드라마 수준**
* 큰 사회적 파급력은 없으나, 대중적으로 안정적 인기를 얻는 작품.
* 예시: 『82년생 김지영』(조남주), 드라마 『도깨비』(김은숙)
📌 **2.1점 - 일반적인 상업 장르 소설 및 드라마 각본 수준**
* 문학적 가치보다는 오락성 중심, 무난한 상업적 소비 목적.
* 예시: 다수의 일반 추리·로맨스 소설, 가벼운 주말 드라마 각본
📌 **1.1점 - 인기 웹소설 및 웹드라마 수준**
* 빠른 소비 목적, 가볍고 흥미 위주로 구성된 작품.
* 예시: 웹소설 플랫폼(네이버, 카카오페이지)의 일반적 인기 작품
📌 **0.1점 - 작가지망생·학생의 습작 수준**
* 이야기 구성, 문체, 캐릭터 묘사 등이 기초 수준이며 완성도가 낮은 단계.
📌 **0점 - 표절 또는 인간 작성 작품**
* 인간이 작성한 것으로 감지된 작품, AI가 생성하지 않음
* 기존 문학 작품에서 직접 표절
"""
}
def get_text(key, lang="en"):
"""Get text in the specified language"""
return LANGUAGE_CONTENT.get(lang, LANGUAGE_CONTENT["en"]).get(key, "")
def calculate_bonus_score(word_count):
"""Calculate bonus score based on word count"""
if word_count <= 5000:
return 0
bonus_words = word_count - 5000
bonus_score = (bonus_words // 1000) * 0.1
# Maximum 0.9 bonus points
return min(bonus_score, 0.9)
def format_username_as_link(username):
"""Format username as a clickable Hugging Face profile link"""
return f'<a href="https://huggingface.co/{username}" target="_blank" style="color: #2563eb; text-decoration: none; font-weight: 500;">{username}</a>'
def format_llm_service_link(llm_url):
"""Format LLM service URL as a clickable link"""
if not llm_url or llm_url.strip() == "":
return "-"
return f'<a href="{llm_url}" target="_blank" style="color: #7c3aed; text-decoration: none;">🔗 Link</a>'
def save_evaluation_to_dataset(username, pdf_filename, evaluation_result, base_score, final_score, word_count, llm_url, is_human_sample, pdf_content):
"""Save evaluation results to service operator's dataset"""
if not HF_TOKEN:
return False, "HF_TOKEN not set."
try:
api = HfApi(token=HF_TOKEN)
# 서비스 운영자의 데이터셋 사용
dataset_id = f"{ADMIN_USERNAME}/user-evaluations" # "fantaxy/user-evaluations"
# Create dataset if it doesn't exist
try:
api.create_repo(
repo_id=dataset_id,
repo_type="dataset",
private=False, # 또는 True
exist_ok=True
)
except:
pass
# Load existing data or create new dataframe
df = pd.DataFrame()
try:
csv_path = api.hf_hub_download(
repo_id=dataset_id,
filename="evaluations.csv",
repo_type="dataset",
local_dir_use_symlinks=False
)
try:
df = pd.read_csv(csv_path, encoding='utf-8')
except UnicodeDecodeError:
try:
df = pd.read_csv(csv_path, encoding='utf-8-sig')
except UnicodeDecodeError:
df = pd.read_csv(csv_path, encoding='cp949')
except:
df = pd.DataFrame(columns=['timestamp', 'username', 'pdf_filename', 'base_score', 'final_score', 'word_count', 'llm_url', 'is_human_sample', 'evaluation'])
# Add new evaluation
new_evaluation = pd.DataFrame([{
'timestamp': datetime.now().isoformat(),
'username': username,
'pdf_filename': pdf_filename,
'base_score': base_score,
'final_score': final_score,
'word_count': word_count,
'llm_url': llm_url if llm_url else "",
'is_human_sample': is_human_sample,
'evaluation': evaluation_result
}])
df = pd.concat([df, new_evaluation], ignore_index=True)
# Save and upload CSV
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.csv', newline='', encoding='utf-8-sig') as f:
df.to_csv(f, index=False, encoding='utf-8-sig')
temp_path = f.name
api.upload_file(
path_or_fileobj=temp_path,
path_in_repo="evaluations.csv",
repo_id=dataset_id,
repo_type="dataset",
commit_message=f"Add evaluation for {pdf_filename}"
)
os.unlink(temp_path)
# Upload PDF file
pdf_path = f"pdfs/{pdf_filename}"
api.upload_file(
path_or_fileobj=pdf_content,
path_in_repo=pdf_path,
repo_id=dataset_id,
repo_type="dataset",
commit_message=f"Upload PDF: {pdf_filename}"
)
# Also save to global leaderboard
save_to_global_leaderboard(username, pdf_filename, final_score, word_count, llm_url, is_human_sample, evaluation_result, pdf_content)
return True, f"Evaluation saved successfully. (Total {len(df)} evaluation records)"
except Exception as e:
return False, f"Error saving: {str(e)}"
def save_to_global_leaderboard(username, pdf_filename, final_score, word_count, llm_url, is_human_sample, evaluation_result, pdf_content):
"""Save to global leaderboard"""
try:
if not HF_TOKEN:
return
api = HfApi(token=HF_TOKEN)
# Check if dataset exists, create if not
try:
api.dataset_info(GLOBAL_DATASET)
except:
try:
api.create_repo(
repo_id=GLOBAL_DATASET,
repo_type="dataset",
private=False,
exist_ok=True
)
except:
return
# Load global leaderboard data
df = pd.DataFrame()
try:
csv_path = api.hf_hub_download(
repo_id=GLOBAL_DATASET,
filename="leaderboard.csv",
repo_type="dataset",
local_dir_use_symlinks=False
)
try:
df = pd.read_csv(csv_path, encoding='utf-8')
except UnicodeDecodeError:
try:
df = pd.read_csv(csv_path, encoding='utf-8-sig')
except UnicodeDecodeError:
df = pd.read_csv(csv_path, encoding='cp949')
except:
df = pd.DataFrame(columns=['timestamp', 'username', 'pdf_filename', 'final_score', 'word_count', 'llm_url', 'is_human_sample', 'evaluation'])
# Add new record
new_record = pd.DataFrame([{
'timestamp': datetime.now().isoformat(),
'username': username,
'pdf_filename': pdf_filename,
'final_score': final_score,
'word_count': word_count,
'llm_url': llm_url if llm_url else "",
'is_human_sample': is_human_sample,
'evaluation': evaluation_result[:5000] if len(evaluation_result) > 5000 else evaluation_result
}])
df = pd.concat([df, new_record], ignore_index=True)
# Save
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.csv', newline='', encoding='utf-8-sig') as f:
df.to_csv(f, index=False, encoding='utf-8-sig')
temp_path = f.name
api.upload_file(
path_or_fileobj=temp_path,
path_in_repo="leaderboard.csv",
repo_id=GLOBAL_DATASET,
repo_type="dataset",
commit_message=f"Update leaderboard - {username}: {final_score}"
)
os.unlink(temp_path)
# Upload PDF file to global dataset
pdf_path = f"pdfs/{username}_{pdf_filename}"
api.upload_file(
path_or_fileobj=pdf_content,
path_in_repo=pdf_path,
repo_id=GLOBAL_DATASET,
repo_type="dataset",
commit_message=f"Upload PDF: {pdf_filename} by {username}"
)
# Save full evaluation as separate file
eval_path = f"evaluations/{username}_{pdf_filename}.txt"
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.txt', encoding='utf-8') as f:
f.write(evaluation_result)
eval_temp_path = f.name
api.upload_file(
path_or_fileobj=eval_temp_path,
path_in_repo=eval_path,
repo_id=GLOBAL_DATASET,
repo_type="dataset",
commit_message=f"Upload evaluation: {pdf_filename} by {username}"
)
os.unlink(eval_temp_path)
except Exception as e:
print(f"Failed to save to global leaderboard: {e}")
def load_global_leaderboard(lang="en"):
"""Load global leaderboard"""
try:
api = HfApi()
# Check if dataset exists
try:
dataset_info = api.dataset_info(GLOBAL_DATASET)
# Get file list
files = api.list_repo_files(
repo_id=GLOBAL_DATASET,
repo_type="dataset"
)
# Find CSV file
csv_files = [f for f in files if f.endswith('.csv')]
if 'leaderboard.csv' in csv_files:
filename = 'leaderboard.csv'
elif 'evaluations.csv' in csv_files:
filename = 'evaluations.csv'
elif csv_files:
filename = csv_files[0]
else:
print("No CSV files found in dataset")
return pd.DataFrame(columns=[
get_text("rank", lang),
get_text("author_id", lang),
get_text("llm_service", lang),
get_text("final_score_col", lang),
get_text("word_count", lang),
get_text("work_title", lang),
get_text("submit_date", lang),
get_text("human_sample", lang),
get_text("download", lang),
get_text("view_eval", lang)
])
except Exception as e:
print(f"Error accessing dataset: {e}")
return pd.DataFrame(columns=[
get_text("rank", lang),
get_text("author_id", lang),
get_text("llm_service", lang),
get_text("final_score_col", lang),
get_text("word_count", lang),
get_text("work_title", lang),
get_text("submit_date", lang),
get_text("human_sample", lang),
get_text("download", lang),
get_text("view_eval", lang)
])
# Download CSV file
csv_path = api.hf_hub_download(
repo_id=GLOBAL_DATASET,
filename=filename,
repo_type="dataset",
local_dir_use_symlinks=False
)
# Read CSV
try:
df = pd.read_csv(csv_path, encoding='utf-8')
except UnicodeDecodeError:
try:
df = pd.read_csv(csv_path, encoding='utf-8-sig')
except UnicodeDecodeError:
df = pd.read_csv(csv_path, encoding='cp949')
print(f"Loaded dataframe with columns: {df.columns.tolist()}")
print(f"Dataframe shape: {df.shape}")
# Check if dataframe is empty
if df.empty:
print("Dataframe is empty")
return pd.DataFrame(columns=[
get_text("rank", lang),
get_text("author_id", lang),
get_text("llm_service", lang),
get_text("final_score_col", lang),
get_text("word_count", lang),
get_text("work_title", lang),
get_text("submit_date", lang),
get_text("human_sample", lang),
get_text("download", lang),
get_text("view_eval", lang)
])
# Find score column
score_column = 'final_score' if 'final_score' in df.columns else 'score' if 'score' in df.columns else None
if not score_column:
print(f"No score column found. Available columns: {df.columns.tolist()}")
return pd.DataFrame(columns=[
get_text("rank", lang),
get_text("author_id", lang),
get_text("llm_service", lang),
get_text("final_score_col", lang),
get_text("word_count", lang),
get_text("work_title", lang),
get_text("submit_date", lang),
get_text("human_sample", lang),
get_text("download", lang),
get_text("view_eval", lang)
])
# Convert score to numeric
df[score_column] = pd.to_numeric(df[score_column], errors='coerce')
# Sort by score
df = df.sort_values(score_column, ascending=False).reset_index(drop=True)
# Add rank
df['rank'] = range(1, len(df) + 1)
# Create display dataframe
display_data = []
for idx, row in df.iterrows():
display_row = {}
# Rank with medal for top 3
rank = row['rank']
if rank == 1:
display_row[get_text("rank", lang)] = "🥇 1"
elif rank == 2:
display_row[get_text("rank", lang)] = "🥈 2"
elif rank == 3:
display_row[get_text("rank", lang)] = "🥉 3"
else:
display_row[get_text("rank", lang)] = f"{rank}"
# Username with link
if 'username' in df.columns:
username = str(row['username'])
display_row[get_text("author_id", lang)] = format_username_as_link(username)
# LLM service link
if 'llm_url' in df.columns:
llm_url = str(row['llm_url']) if pd.notna(row['llm_url']) else ""
display_row[get_text("llm_service", lang)] = format_llm_service_link(llm_url)
# Score with color
score = float(row[score_column])
if score >= 9.0:
score_color = "#ff6b6b" # Red for Nobel level
elif score >= 8.0:
score_color = "#f59e0b" # Orange for classic
elif score >= 7.0:
score_color = "#8b5cf6" # Purple for bestseller
elif score >= 5.0:
score_color = "#3b82f6" # Blue for professional
elif score == 0:
score_color = "#dc2626" # Dark red for plagiarism
else:
score_color = "#6b7280" # Gray for others
display_row[get_text("final_score_col", lang)] = f'<span style="color: {score_color}; font-weight: bold;">{score:.1f}</span>'
# Word count
if 'word_count' in df.columns:
display_row[get_text("word_count", lang)] = f"{int(row['word_count']):,}"
# Work title
if 'pdf_filename' in df.columns:
display_row[get_text("work_title", lang)] = str(row['pdf_filename'])
# Date
if 'timestamp' in df.columns:
date = datetime.fromisoformat(str(row['timestamp']))
display_row[get_text("submit_date", lang)] = date.strftime("%Y-%m-%d")
# Human sample indicator
is_human_sample = False
if 'is_human_sample' in df.columns:
is_human_sample = row['is_human_sample']
if is_human_sample:
display_row[get_text("human_sample", lang)] = get_text("human_sample_badge", lang)
else:
display_row[get_text("human_sample", lang)] = get_text("ai_generated_badge", lang)
# Download button - store data but show button text only
if 'username' in df.columns and 'pdf_filename' in df.columns:
username = str(row['username'])
pdf_filename = str(row['pdf_filename'])
# Store data as hidden attribute but display button
display_row[get_text("download", lang)] = f'<button class="download-btn" data-user="{username}" data-file="{pdf_filename}">📥 PDF</button>'
# View evaluation button - store data but show button text only
if 'username' in df.columns and 'pdf_filename' in df.columns:
username = str(row['username'])
pdf_filename = str(row['pdf_filename'])
# Store data as hidden attribute but display button
display_row[get_text("view_eval", lang)] = f'<button class="view-btn" data-user="{username}" data-file="{pdf_filename}">👁️ View</button>'
display_data.append(display_row)
display_df = pd.DataFrame(display_data)
print(f"Display dataframe shape: {display_df.shape}")
print(f"Display dataframe columns: {display_df.columns.tolist()}")
return display_df
except Exception as e:
print(f"Failed to load leaderboard: {e}")
import traceback
traceback.print_exc()
return pd.DataFrame(columns=[
get_text("rank", lang),
get_text("author_id", lang),
get_text("llm_service", lang),
get_text("final_score_col", lang),
get_text("word_count", lang),
get_text("work_title", lang),
get_text("submit_date", lang),
get_text("human_sample", lang),
get_text("download", lang),
get_text("view_eval", lang)
])
def load_user_evaluations(username, lang="en"):
"""Load user's evaluation history from central dataset"""
if not HF_TOKEN:
return None, "HF_TOKEN not set."
try:
api = HfApi(token=HF_TOKEN)
# 서비스 운영자의 중앙 데이터셋 사용
dataset_id = f"{ADMIN_USERNAME}/user-evaluations" # "fantaxy/user-evaluations"
# Download CSV file
csv_path = api.hf_hub_download(
repo_id=dataset_id,
filename="evaluations.csv",
repo_type="dataset",
local_dir_use_symlinks=False
)
# Read CSV
try:
df = pd.read_csv(csv_path, encoding='utf-8')
except UnicodeDecodeError:
try:
df = pd.read_csv(csv_path, encoding='utf-8-sig')
except UnicodeDecodeError:
df = pd.read_csv(csv_path, encoding='cp949')
# 해당 사용자의 데이터만 필터링 ⭐ 중요한 변경점
user_df = df[df['username'] == username].copy()
# 데이터가 없는 경우 빈 DataFrame 반환
if user_df.empty:
return pd.DataFrame(columns=get_text("history_headers", lang)), "No evaluation history found."
# Return recent 10 entries
user_df = user_df.sort_values('timestamp', ascending=False).head(10)
# Create display dataframe
display_df = user_df[['timestamp', 'pdf_filename', 'final_score', 'word_count']].copy()
# Add human sample indicator
if 'is_human_sample' in user_df.columns:
display_df['type'] = user_df['is_human_sample'].apply(
lambda x: get_text("human_sample_badge", lang) if x else get_text("ai_generated_badge", lang)
)
else:
display_df['type'] = get_text("ai_generated_badge", lang)
display_df['evaluation_summary'] = user_df['evaluation'].apply(lambda x: x[:100] + '...' if len(x) > 100 else x)
# Set column names based on language
display_df.columns = get_text("history_headers", lang)
return display_df, None
except FileNotFoundError:
# 데이터셋이 아직 존재하지 않는 경우
return pd.DataFrame(columns=get_text("history_headers", lang)), "No evaluation history yet."
except Exception as e:
return pd.DataFrame(columns=get_text("history_headers", lang)), f"Failed to load history: {str(e)}"
def extract_score_from_evaluation(evaluation_text):
"""Extract score from evaluation result"""
try:
# 더 많은 패턴 추가 - 이모지와 마크다운 포함
patterns = [
# 기존 패턴
r'종합 점수:\s*(\d+(?:\.\d+)?)/10점',
r'Overall Score:\s*(\d+(?:\.\d+)?)/10 points',
# 이모지가 포함된 패턴
r'🎯\s*종합 점수:\s*(\d+(?:\.\d+)?)/10점',
r'🎯\s*Overall Score:\s*(\d+(?:\.\d+)?)/10 points',
# 다양한 형식
r'종합 점수\s*:\s*(\d+(?:\.\d+)?)/10',
r'Overall Score\s*:\s*(\d+(?:\.\d+)?)/10',
# 기본 평가 점수 패턴 추가
r'기본 평가 점수:\s*(\d+(?:\.\d+)?)/10',
r'Base Evaluation Score:\s*(\d+(?:\.\d+)?)/10'
]
for pattern in patterns:
match = re.search(pattern, evaluation_text, re.IGNORECASE | re.MULTILINE)
if match:
score = float(match.group(1))
print(f"Debug: Found score {score} with pattern: {pattern}")
if 0 <= score <= 10:
return score
print(f"Warning: Could not find score pattern in evaluation text")
print(f"First 300 chars of evaluation: {evaluation_text[:300]}")
return 0.1
except Exception as e:
print(f"Error in extract_score_from_evaluation: {e}")
return 0.1
def extract_text_from_pdf(pdf_file) -> tuple:
"""Extract text from PDF and calculate word count"""
text = ""
page_count = 0
# Try pdfplumber first if available
if PDFPLUMBER_AVAILABLE:
try:
if isinstance(pdf_file, str):
with pdfplumber.open(pdf_file) as pdf:
page_count = len(pdf.pages)
for page in pdf.pages:
page_text = page.extract_text()
if page_text:
text += page_text
else:
pdf_file_io = io.BytesIO(pdf_file)
with pdfplumber.open(pdf_file_io) as pdf:
page_count = len(pdf.pages)
for page in pdf.pages:
page_text = page.extract_text()
if page_text:
text += page_text
if not text.strip():
raise Exception("Failed to extract text with pdfplumber")
except Exception as e:
print(f"pdfplumber error: {e}, retrying with PyPDF2")
text = ""
# Try PyPDF2 if pdfplumber failed or is not available
if not text:
try:
if isinstance(pdf_file, str):
with open(pdf_file, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
page_count = len(pdf_reader.pages)
for page_num in range(page_count):
try:
page = pdf_reader.pages[page_num]
page_text = page.extract_text()
if page_text:
page_text = page_text.encode('utf-8', errors='ignore').decode('utf-8', errors='ignore')
page_text = ''.join(char for char in page_text if ord(char) < 0x10000 or (0x10000 <= ord(char) <= 0x10FFFF))
text += page_text
except Exception as page_error:
print(f"Error reading page {page_num + 1}: {page_error}")
continue
else:
pdf_file_io = io.BytesIO(pdf_file)
pdf_reader = PyPDF2.PdfReader(pdf_file_io)
page_count = len(pdf_reader.pages)
for page_num in range(page_count):
try:
page = pdf_reader.pages[page_num]
page_text = page.extract_text()
if page_text:
page_text = page_text.encode('utf-8', errors='ignore').decode('utf-8', errors='ignore')
page_text = ''.join(char for char in page_text if ord(char) < 0x10000 or (0x10000 <= ord(char) <= 0x10FFFF))
text += page_text
except Exception as page_error:
print(f"Error reading page {page_num + 1}: {page_error}")
continue
except Exception as e:
error_msg = f"PDF reading error: {str(e)}"
if "codec" in str(e) or "encoding" in str(e) or "utf-16" in str(e):
error_msg += "\n\nThis PDF uses special encoding. Try:"
error_msg += "\n1. Re-save the PDF with another PDF reader"
error_msg += "\n2. Convert to text first, then back to PDF"
error_msg += "\n3. Save as 'PDF/A' format using Adobe Acrobat"
return error_msg, 0, 0
# Clean text
text = text.strip()
if not text:
return "Cannot extract text from PDF. May be scanned image PDF or protected PDF.", 0, 0
# Additional text cleaning
text = text.replace('\x00', '')
text = ''.join(char for char in text if char.isprintable() or char in '\n\t ')
# Calculate word count
words = text.split()
word_count = len(words)
# For Korean text, consider character count
korean_chars = len(re.findall(r'[가-힣]', text))
if korean_chars > 0:
estimated_korean_words = korean_chars / 2.5
word_count = max(word_count, int(estimated_korean_words))
return text, word_count, page_count
def evaluate_novel_with_gemini(text: str, lang: str = "en", is_human_sample: bool = False) -> str:
"""Evaluate novel using Gemini 2.5 Pro"""
try:
if not GEMINI_API_KEY:
return "### ⚠️ API Key Error\n\nGemini API key not set. Please check GEMINI_API environment variable in Space settings."
client = genai.Client(api_key=GEMINI_API_KEY)
model = "gemini-2.5-pro"
text_length = len(text)
# Choose evaluation criteria based on language
criteria = EVALUATION_CRITERIA[lang]
# Create evaluation prompt based on language
if lang == "ko":
evaluation_prompt = f"""
당신은 AGI 튜링테스트의 문학 창작 부문 평가자입니다.
이 테스트는 AI가 인간 수준의 장편소설을 창작할 수 있는지 평가하는 것이 목적입니다.
다음 작품을 아래 평가 기준에 따라 철저히 분석하고 평가해주세요.
**중요**: 이 작품이 AI가 생성한 것인지 인간이 작성한 것인지도 평가해야 합니다.
- AI 생성 패턴 (반복적 구조, 일관된 스타일, 기계적 표현 등)
- 인간 작성 징후 (감정의 깊이, 문화적 뉘앙스, 개인적 경험 반영 등)
- 기존 문학 작품과의 유사성 (표절 여부)
만약 이 작품이 인간이 작성했거나 표절로 판단되면, 점수는 0점입니다.
{"단, 이 작품은 관리자가 휴먼 샘플로 표시했으므로 0점 처리하지 마세요." if is_human_sample else ""}
[평가 기준]
{criteria}
[평가할 소설 - 전체 {text_length}자]
{text}
[평가 요구사항]
**중요: 작품의 전체 내용을 모두 읽고 평가해야 합니다. 시작, 중간, 결말 모든 부분을 고려하세요.**
1. AI/인간 판별: 이 작품이 AI가 생성했는지 인간이 작성했는지 분석
2. 표절 검사: 기존 문학 작품과의 유사성 확인
3. 점수 (0-10점): 위 기준에 따라 객관적으로 평가
4. 작품성 평가: 문학적 가치, 서사 구조, 인물 묘사, 문체
5. 종합 비평
다음 형식으로 응답해주세요:
## 📊 작품 평가 결과
### 🔍 AI/인간 판별
- **판정**: [AI 생성 / 인간 작성 / 표절]
- **근거**: [구체적인 판별 근거]
### 🎯 종합 점수: X.X/10점 (여기서 X.X는 0.1에서 10.0 사이의 숫자)
- **평가 등급**: [해당 점수의 등급]
- **점수 선정 이유**: [왜 이 점수를 주었는지 구체적 설명]
### 📝 상세 평가
[구체적인 평가 내용]
"""
else:
evaluation_prompt = f"""
You are an evaluator for the AGI Turing Test's literary creation section.
This test aims to evaluate whether AI can create novels at a level equivalent to human authors.
Please thoroughly analyze and evaluate the following work according to the criteria below.
**Important: You must read and evaluate the entire work. Consider all parts from beginning, middle, to end.**
1. AI/Human Detection: Analyze whether this work was AI-generated or human-written
2. Plagiarism Check: Verify similarity with existing literary works
3. Score (0-10 points): Objectively evaluate according to the above criteria
4. Literary Quality: Literary value, narrative structure, character description, writing style
5. Comprehensive Critique
Please respond in the following format:
## 📊 Work Evaluation Results
### 🔍 AI/Human Detection
- **Determination**: [AI Generated / Human Written / Plagiarized]
- **Evidence**: [Specific detection evidence]
### 🎯 Overall Score: X.X/10 points (where X.X is a number between 0.1 and 10.0)
- **Evaluation Grade**: [grade for this score]
- **Score Selection Reason**: [specific explanation of why this score was given]
### 📝 Detailed Evaluation
[Specific evaluation content]
"""
contents = [
types.Content(
role="user",
parts=[types.Part.from_text(text=evaluation_prompt)]
)
]
generate_content_config = types.GenerateContentConfig(
thinking_config=types.ThinkingConfig(thinking_budget=-1),
response_mime_type="text/plain",
)
# Get response via streaming
full_response = ""
for chunk in client.models.generate_content_stream(
model=model,
contents=contents,
config=generate_content_config,
):
if chunk.text:
full_response += chunk.text
return full_response
except Exception as e:
return f"Error during evaluation: {str(e)}\n\nDebug info: Please check if API key is set."
def evaluate_novel(pdf_file, llm_url, is_human_sample, lang, profile: gr.OAuthProfile = None, oauth_token: gr.OAuthToken = None, progress=gr.Progress()) -> tuple:
"""Main function to evaluate PDF file"""
try:
# Check OAuth profile
if profile:
greeting = get_text("submitter", lang) + f"{profile.username}\n\n"
username = profile.username
else:
greeting = get_text("login_required", lang)
return greeting, None, None
# Check if human sample checkbox is allowed
if is_human_sample and username != ADMIN_USERNAME:
greeting += f"⚠️ {get_text('admin_only', lang)}\n\n"
is_human_sample = False
if not pdf_file:
return greeting + "Please upload a PDF file.", None, None
# Extract PDF filename
pdf_filename = os.path.basename(pdf_file) if isinstance(pdf_file, str) else "uploaded.pdf"
progress(0.2, desc="Reading PDF file...")
text, word_count, page_count = extract_text_from_pdf(pdf_file)
# Check for errors
if word_count == 0:
return greeting + text, None, None
# Check minimum word count
if word_count < 5000:
error_msg = get_text("min_words_error", lang).format(
pages=page_count,
words=word_count,
needed=5000 - word_count
)
return greeting + error_msg, None, None
progress(0.4, desc="AI is analyzing the work...")
# Calculate bonus score
bonus_score = calculate_bonus_score(word_count)
greeting += get_text("work_info", lang) + f"{page_count}" + get_text("pages", lang)
greeting += f"{word_count:,}" + get_text("words", lang)
greeting += get_text("volume_bonus", lang) + f"{bonus_score}" + get_text("points", lang)
greeting += get_text("evaluator", lang)
evaluation_result = evaluate_novel_with_gemini(text, lang, is_human_sample)
progress(0.8, desc="Saving evaluation results...")
# Check for plagiarism detection
plagiarism_detected = False
if not is_human_sample:
# Check if AI detected human writing or plagiarism
if any(keyword in evaluation_result.lower() for keyword in ['human written', 'plagiarized', '인간 작성', '표절']):
if '0/10' in evaluation_result or '0점/10점' in evaluation_result:
plagiarism_detected = True
if plagiarism_detected:
base_score = 0
final_score = 0
evaluation_result = get_text("plagiarism_detected", lang) + "\n\n" + evaluation_result
else:
# Extract base score with debugging
print(f"\n=== Score Extraction Debug ===")
print(f"Bonus score calculated: {bonus_score}")
base_score = extract_score_from_evaluation(evaluation_result)
print(f"Extracted base score: {base_score}")
# ⭐ final_score 계산 추가
final_score = min(base_score + bonus_score, 10.0)
print(f"Final score calculated: {final_score}")
# 점수가 올바르게 추출되었는지 재확인
if base_score == 0.1 and "9.1" in evaluation_result:
# 평가 텍스트에 높은 점수가 언급되었는데 0.1로 추출된 경우
print("WARNING: Possible score extraction mismatch detected")
# 수동으로 다시 확인
manual_check = re.findall(r'(\d+(?:\.\d+)?)/10', evaluation_result)
if manual_check:
print(f"Found scores in text: {manual_check}")
# Add final score display
score_display = get_text("final_score_title", lang)
score_display += get_text("base_score", lang) + f"{base_score}/10" + get_text("points", lang).replace("(words over 5,000)", "") + "\n"
score_display += get_text("bonus_score", lang) + f"{bonus_score}" + get_text("points_detail", lang)
score_display += get_text("final_score", lang) + f"{final_score}/10" + get_text("max_10", lang)
evaluation_result = score_display + evaluation_result
# Read PDF content for saving
with open(pdf_file, 'rb') as f:
pdf_content = f.read()
# Save to dataset
if HF_TOKEN and oauth_token:
success, message = save_evaluation_to_dataset(username, pdf_filename, evaluation_result, base_score, final_score, word_count, llm_url, is_human_sample, pdf_content)
if success:
greeting += get_text("save_success", lang) + f"{message}\n\n"
else:
greeting += get_text("save_error", lang) + f"{message}\n\n"
progress(1.0, desc="Evaluation complete!")
# Load evaluation history
history_df, _ = load_user_evaluations(username, lang)
# Refresh leaderboard
leaderboard_df = load_global_leaderboard(lang)
return greeting + evaluation_result, history_df, leaderboard_df
except Exception as e:
return f"Error during evaluation: {str(e)}", None, None
def download_pdf(username, pdf_filename):
"""Download PDF file from dataset and copy to temp directory"""
try:
api = HfApi()
# Try to download from global dataset first
try:
pdf_path = api.hf_hub_download(
repo_id=GLOBAL_DATASET,
filename=f"pdfs/{username}_{pdf_filename}",
repo_type="dataset",
local_dir_use_symlinks=False
)
except:
# Try user's personal dataset
try:
pdf_path = api.hf_hub_download(
repo_id=f"{username}/{DATASET_NAME}",
filename=f"pdfs/{pdf_filename}",
repo_type="dataset",
local_dir_use_symlinks=False
)
except:
return None
# Copy to temp directory
temp_dir = tempfile.gettempdir()
temp_path = os.path.join(temp_dir, f"{username}_{pdf_filename}")
shutil.copy2(pdf_path, temp_path)
return temp_path
except Exception as e:
print(f"Error downloading PDF: {e}")
return None
def view_evaluation(username, pdf_filename, lang="en"):
"""View evaluation from dataset"""
try:
api = HfApi()
# Try to download evaluation from global dataset
try:
eval_path = api.hf_hub_download(
repo_id=GLOBAL_DATASET,
filename=f"evaluations/{username}_{pdf_filename}.txt",
repo_type="dataset",
local_dir_use_symlinks=False
)
with open(eval_path, 'r', encoding='utf-8') as f:
evaluation = f.read()
return evaluation
except:
# Try to get from CSV if txt file not found
try:
csv_path = api.hf_hub_download(
repo_id=GLOBAL_DATASET,
filename="leaderboard.csv",
repo_type="dataset",
local_dir_use_symlinks=False
)
df = pd.read_csv(csv_path, encoding='utf-8')
row = df[(df['username'] == username) & (df['pdf_filename'] == pdf_filename)]
if not row.empty and 'evaluation' in df.columns:
return row.iloc[0]['evaluation']
except:
pass
return "Evaluation not found."
except Exception as e:
return f"Error loading evaluation: {str(e)}"
# Custom CSS - Modern and bright design with simplified main page
css = """
/* Main container */
.container {
max-width: 1600px;
margin: auto;
padding: 20px;
}
/* Simple header for main page */
.simple-header {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 20px;
border-radius: 12px;
text-align: center;
margin-bottom: 20px;
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.1);
}
.simple-header h3 {
font-size: 1.8em;
margin: 0;
}
/* Header gradient */
.leaderboard-header {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 30px;
border-radius: 15px;
text-align: center;
margin-bottom: 30px;
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.1);
}
.leaderboard-header h2 {
font-size: 2.5em;
margin-bottom: 10px;
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.2);
}
/* Quick submit box */
.quick-submit-box {
background: linear-gradient(135deg, #f3f4f6 0%, #e5e7eb 100%);
border-radius: 12px;
padding: 25px;
margin-bottom: 20px;
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.05);
}
.quick-submit-box h3 {
color: #1f2937;
margin-top: 0;
margin-bottom: 15px;
}
/* Tabs styling */
.tabs {
border-radius: 12px;
overflow: hidden;
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.08);
}
button.tab-button {
font-size: 1.1em;
padding: 15px 30px;
background: white;
border: none;
transition: all 0.3s ease;
}
button.tab-button:hover {
background: #f3f4f6;
transform: translateY(-2px);
}
button.tab-button.selected {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
font-weight: bold;
}
/* Cards and boxes */
.gr-box {
border-radius: 12px;
border: 1px solid #e5e7eb;
padding: 20px;
background: white;
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.05);
transition: all 0.3s ease;
}
.gr-box:hover {
box-shadow: 0 8px 25px rgba(0, 0, 0, 0.1);
transform: translateY(-2px);
}
/* Buttons */
.gr-button {
border-radius: 8px;
font-weight: 600;
transition: all 0.3s ease;
}
.gr-button-primary {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
border: none;
}
.gr-button-primary:hover {
transform: translateY(-2px);
box-shadow: 0 8px 20px rgba(102, 126, 234, 0.4);
}
.gr-button-secondary {
background: #f3f4f6;
color: #4b5563;
border: 1px solid #e5e7eb;
}
.gr-button-secondary:hover {
background: #e5e7eb;
transform: translateY(-1px);
}
/* Download and View buttons */
.download-btn, .view-btn {
border: none;
padding: 6px 12px;
cursor: pointer;
border-radius: 6px;
font-size: 14px;
transition: all 0.3s ease;
}
.download-btn {
background-color: #10b981;
color: white;
}
.download-btn:hover {
background-color: #059669;
transform: translateY(-1px);
}
.view-btn {
background-color: #6366f1;
color: white;
}
.view-btn:hover {
background-color: #4f46e5;
transform: translateY(-1px);
}
/* Warning box */
.warning-box {
background: linear-gradient(135deg, #fee2e2 0%, #fecaca 100%);
border: 2px solid #ef4444;
border-radius: 12px;
padding: 20px;
margin: 20px 0;
box-shadow: 0 4px 15px rgba(239, 68, 68, 0.1);
}
.warning-box strong {
color: #dc2626;
font-size: 1.1em;
}
/* Success/Info boxes */
.success-box {
background: linear-gradient(135deg, #d1fae5 0%, #a7f3d0 100%);
border: 2px solid #10b981;
border-radius: 12px;
padding: 20px;
margin: 20px 0;
box-shadow: 0 4px 15px rgba(16, 185, 129, 0.1);
}
.info-box {
background: linear-gradient(135deg, #dbeafe 0%, #bfdbfe 100%);
border: 2px solid #3b82f6;
border-radius: 12px;
padding: 20px;
margin: 20px 0;
box-shadow: 0 4px 15px rgba(59, 130, 246, 0.1);
}
/* Table styling */
.gr-dataframe {
border-radius: 12px;
overflow: hidden;
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.08);
}
.gr-dataframe thead {
background: linear-gradient(135deg, #f3f4f6 0%, #e5e7eb 100%);
}
.gr-dataframe th {
padding: 15px;
font-weight: 700;
color: #374151;
text-transform: uppercase;
font-size: 0.85em;
letter-spacing: 0.05em;
}
.gr-dataframe td {
padding: 12px 15px;
border-bottom: 1px solid #f3f4f6;
}
.gr-dataframe tr:hover {
background: #f9fafb;
}
/* Score colors in table */
.score-nobel { color: #ef4444; font-weight: bold; }
.score-classic { color: #f59e0b; font-weight: bold; }
.score-bestseller { color: #8b5cf6; font-weight: bold; }
.score-professional { color: #3b82f6; font-weight: bold; }
.score-amateur { color: #6b7280; font-weight: bold; }
/* Modal styling */
.modal-overlay {
position: fixed;
top: 0;
left: 0;
width: 100%;
height: 100%;
background: rgba(0, 0, 0, 0.5);
display: none;
justify-content: center;
align-items: center;
z-index: 1000;
}
.modal-content {
background: white;
border-radius: 15px;
padding: 30px;
max-width: 800px;
max-height: 80vh;
overflow-y: auto;
box-shadow: 0 20px 50px rgba(0, 0, 0, 0.3);
}
/* File upload area */
.gr-file {
border: 2px dashed #9ca3af;
border-radius: 12px;
background: #f9fafb;
transition: all 0.3s ease;
}
.gr-file:hover {
border-color: #667eea;
background: #ede9fe;
}
/* Language selector */
.language-selector {
position: absolute;
top: 20px;
right: 20px;
background: white;
border-radius: 8px;
padding: 8px;
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.1);
}
/* Guide content styling */
.guide-content {
max-width: 1200px;
margin: 0 auto;
padding: 20px;
}
.guide-section {
background: white;
border-radius: 12px;
padding: 30px;
margin-bottom: 20px;
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.05);
}
.guide-section h3 {
color: #1f2937;
margin-top: 0;
margin-bottom: 20px;
font-size: 1.5em;
}
.guide-section ul {
list-style: none;
padding-left: 0;
}
.guide-section ul li {
position: relative;
padding-left: 24px;
margin-bottom: 12px;
line-height: 1.6;
}
.guide-section ul li:before {
content: "▸";
position: absolute;
left: 0;
color: #667eea;
font-weight: bold;
}
/* Markdown content */
.markdown-content h3 {
color: #1f2937;
margin-top: 24px;
margin-bottom: 12px;
}
.markdown-content ul {
list-style: none;
padding-left: 0;
}
.markdown-content ul li {
position: relative;
padding-left: 24px;
margin-bottom: 8px;
}
.markdown-content ul li:before {
content: "▸";
position: absolute;
left: 0;
color: #667eea;
font-weight: bold;
}
/* Animations */
@keyframes fadeIn {
from { opacity: 0; transform: translateY(10px); }
to { opacity: 1; transform: translateY(0); }
}
.gr-box, .gr-button, .gr-dataframe {
animation: fadeIn 0.5s ease-out;
}
/* Responsive design */
@media (max-width: 768px) {
.container {
padding: 10px;
}
.leaderboard-header h2 {
font-size: 1.8em;
}
.simple-header h3 {
font-size: 1.5em;
}
.gr-dataframe {
font-size: 0.9em;
}
}
"""
# JavaScript code - simplified
js_code = """
<script>
console.log("AGI Novel Evaluation System Loaded");
</script>
"""
# Create Gradio interface
with gr.Blocks(title="AGI Novel Evaluation Leaderboard", theme=gr.themes.Soft(), css=css) as demo:
# Add JavaScript
gr.HTML(js_code)
# State for language and current selection
current_lang = gr.State(value="en")
selected_user = gr.State(value="")
selected_file = gr.State(value="")
# Language selector
with gr.Row():
with gr.Column(scale=10):
title_md = gr.Markdown(get_text("title", "en"))
with gr.Column(scale=1):
lang_selector = gr.Radio(
choices=[("English", "en"), ("한국어", "ko")],
value="en",
label="Language",
interactive=True
)
# OAuth login button
gr.LoginButton()
with gr.Tabs() as tabs:
# Leaderboard tab - simplified main page
# Leaderboard tab - simplified main page
with gr.TabItem(get_text("leaderboard_tab", "en"), id="leaderboard_tab") as leaderboard_tab:
leaderboard_header = gr.HTML(get_text("simple_leaderboard_header", "en"))
# Remove quick submit section, expand leaderboard to full width
leaderboard_display = gr.Dataframe(
headers=[
get_text("rank", "en"),
get_text("author_id", "en"),
get_text("llm_service", "en"),
get_text("final_score_col", "en"),
get_text("word_count", "en"),
get_text("work_title", "en"),
get_text("submit_date", "en"),
get_text("human_sample", "en"),
get_text("download", "en"),
get_text("view_eval", "en")
],
label="",
interactive=False,
wrap=True,
datatype=["html", "html", "html", "html", "str", "str", "str", "str", "html", "html"]
)
# Actions section below leaderboard
gr.Markdown("### 🔧 Actions")
with gr.Row():
action_user = gr.Textbox(label="Username", placeholder="Enter username")
action_file = gr.Textbox(label="Filename", placeholder="Enter filename")
with gr.Row():
manual_download_btn = gr.Button("📥 Download PDF", size="sm")
manual_view_btn = gr.Button("👁️ View Evaluation", size="sm")
download_result = gr.File(label="Downloaded PDF", visible=False)
# Evaluation display
eval_display = gr.Markdown("", visible=False)
refresh_btn = gr.Button(get_text("refresh_btn", "en"), variant="secondary")
# Submit tab - detailed submission
with gr.TabItem(get_text("submit_tab", "en"), id="submit_tab") as submit_tab:
with gr.Row():
with gr.Column():
pdf_input = gr.File(
label=get_text("upload_label", "en"),
file_types=[".pdf"],
type="filepath"
)
llm_url_input = gr.Textbox(
label=get_text("llm_url_label", "en"),
placeholder=get_text("llm_url_placeholder", "en"),
lines=1,
max_lines=1
)
is_human_sample_input = gr.Checkbox(
label=get_text("is_human_sample_label", "en"),
value=False,
interactive=True
)
evaluate_btn = gr.Button(
get_text("evaluate_btn", "en"),
variant="primary",
size="lg"
)
with gr.Column():
output = gr.Markdown(
label="Evaluation Results",
value=get_text("result_label", "en")
)
# History tab
with gr.TabItem(get_text("history_tab", "en"), id="history_tab") as history_tab:
history_btn = gr.Button(get_text("history_btn", "en"), variant="secondary")
history_display = gr.Dataframe(
headers=get_text("history_headers", "en"),
label=get_text("history_label", "en"),
interactive=False
)
# Guide tab - all detailed information
with gr.TabItem(get_text("guide_tab", "en"), id="guide_tab") as guide_tab:
with gr.Column(elem_classes="guide-content"):
# Purpose section
with gr.Group(elem_classes="guide-section"):
purpose_title_md = gr.Markdown(get_text("purpose_title", "en"))
purpose_desc_md = gr.Markdown(get_text("purpose_desc", "en"))
# Why Novel Creation section
with gr.Group(elem_classes="guide-section"):
why_title_md = gr.Markdown(get_text("why_title", "en"))
why_desc_md = gr.Markdown(get_text("why_desc", "en"))
# Evaluation Criteria section
with gr.Group(elem_classes="guide-section"):
criteria_title_md = gr.Markdown(get_text("criteria_title", "en"))
criteria_desc_md = gr.Markdown(get_text("criteria_desc", "en"))
# Requirements and Scoring
with gr.Row():
with gr.Column():
with gr.Group(elem_classes="guide-section"):
requirements_md = gr.Markdown(get_text("requirements", "en"))
bonus_md = gr.Markdown(get_text("bonus_system", "en"))
with gr.Column():
with gr.Group(elem_classes="guide-section"):
score_system_md = gr.Markdown(get_text("score_system", "en"))
grade_criteria_md = gr.Markdown(get_text("grade_criteria", "en"))
# Evaluation Scale
with gr.Group(elem_classes="guide-section"):
eval_scale_md = gr.Markdown(get_text("evaluation_scale", "en"))
# Warning
warning_html = gr.HTML(get_text("warning", "en"))
# Quick submit result display (hidden by default)
quick_submit_output = gr.Markdown(visible=False)
# Language change handler
def update_language(lang):
return (
lang, # Update state
get_text("title", lang),
gr.TabItem(label=get_text("leaderboard_tab", lang)),
gr.TabItem(label=get_text("submit_tab", lang)),
gr.TabItem(label=get_text("history_tab", lang)),
gr.TabItem(label=get_text("guide_tab", lang)),
get_text("simple_leaderboard_header", lang),
gr.Button(value=get_text("refresh_btn", lang), variant="secondary"),
gr.File(label=get_text("upload_label", lang)),
gr.Textbox(label=get_text("llm_url_label", lang), placeholder=get_text("llm_url_placeholder", lang)),
gr.Checkbox(label=get_text("is_human_sample_label", lang)),
gr.Button(value=get_text("evaluate_btn", lang), variant="primary", size="lg"),
gr.Markdown(value=get_text("result_label", lang)),
gr.Button(value=get_text("history_btn", lang), variant="secondary"),
load_global_leaderboard(lang),
gr.Button(value=f"📥 {get_text('download_pdf', lang)}", size="sm"),
gr.Button(value=f"👁️ {get_text('view_evaluation', lang)}", size="sm"),
# Guide tab updates
get_text("purpose_title", lang),
get_text("purpose_desc", lang),
get_text("why_title", lang),
get_text("why_desc", lang),
get_text("criteria_title", lang),
get_text("criteria_desc", lang),
get_text("requirements", lang),
get_text("bonus_system", lang),
get_text("score_system", lang),
get_text("grade_criteria", lang),
get_text("evaluation_scale", lang),
get_text("warning", lang)
)
lang_selector.change(
fn=update_language,
inputs=[lang_selector],
outputs=[
current_lang, title_md,
leaderboard_tab, submit_tab, history_tab, guide_tab,
leaderboard_header, refresh_btn,
pdf_input, llm_url_input, is_human_sample_input, evaluate_btn, output, history_btn, leaderboard_display,
manual_download_btn, manual_view_btn,
# Guide tab elements
purpose_title_md, purpose_desc_md, why_title_md, why_desc_md,
criteria_title_md, criteria_desc_md, requirements_md, bonus_md,
score_system_md, grade_criteria_md, eval_scale_md, warning_html
]
)
# Event handlers
evaluate_btn.click(
fn=evaluate_novel,
inputs=[pdf_input, llm_url_input, is_human_sample_input, current_lang],
outputs=[output, history_display, leaderboard_display],
show_progress=True
)
def refresh_history(profile: gr.OAuthProfile = None):
if not profile:
return None
lang = current_lang.value if hasattr(current_lang, 'value') else "en"
df, _ = load_user_evaluations(profile.username, lang)
return df
history_btn.click(
fn=refresh_history,
inputs=[],
outputs=[history_display]
)
refresh_btn.click(
fn=lambda lang: load_global_leaderboard(lang),
inputs=[current_lang],
outputs=[leaderboard_display]
)
# Click handler for dataframe rows
def on_dataframe_select(evt: gr.SelectData, dataframe):
if evt.index and len(evt.index) >= 2:
row_idx = evt.index[0]
col_idx = evt.index[1]
# Get column name
if dataframe is not None and not dataframe.empty:
cols = dataframe.columns.tolist()
if col_idx < len(cols):
col_name = cols[col_idx]
# Check if it's download or view column
if col_name in ["Download", "다운로드", "View", "평가보기"]:
# Get the HTML content
cell_value = dataframe.iloc[row_idx, col_idx]
# Extract username and filename from data attributes
import re
user_match = re.search(r'data-user="([^"]+)"', str(cell_value))
file_match = re.search(r'data-file="([^"]+)"', str(cell_value))
if user_match and file_match:
return user_match.group(1), file_match.group(1)
return "", ""
leaderboard_display.select(
fn=on_dataframe_select,
inputs=[leaderboard_display],
outputs=[action_user, action_file]
)
# Manual download button
def manual_download(user, file):
if user and file:
pdf_path = download_pdf(user, file)
if pdf_path:
return gr.File(value=pdf_path, visible=True)
return gr.File(visible=False)
manual_download_btn.click(
fn=manual_download,
inputs=[action_user, action_file],
outputs=[download_result]
)
# Manual view button
def manual_view(user, file, lang):
if user and file:
evaluation = view_evaluation(user, file, lang)
title = f"## 📋 Evaluation for {file}\n### Author: {user}\n\n"
return gr.Markdown(value=title + evaluation, visible=True)
return gr.Markdown(visible=False)
manual_view_btn.click(
fn=manual_view,
inputs=[action_user, action_file, current_lang],
outputs=[eval_display]
)
# Auto-load leaderboard on page load
demo.load(
fn=lambda: load_global_leaderboard("en"),
inputs=[],
outputs=[leaderboard_display]
)
if __name__ == "__main__":
demo.launch() |