chatmlTest / model /dataset.py
fangshengren's picture
Upload 59 files
f4fac26 verified
raw
history blame
10.8 kB
from typing import Union
from torch.utils.data import Dataset
from torch import LongTensor, cuda
from transformers import PreTrainedTokenizerFast
from fastparquet import ParquetFile
from torch.utils.data import DataLoader
from datasets import load_dataset
import datasets
import pyarrow.parquet as pq
from numpy import array, int64
from numpy.random import shuffle
# import sys
# sys.path.extend(['.', '..'])
from config import PROJECT_ROOT
class MyDataset(Dataset):
def __init__(self,
parquet_file: str,
tokenizer_dir: str,
keep_in_memory: bool=False,
max_seq_len: int=512,
buffer_size: int=40960,
) -> None:
'''
keep_in_memory: 是否将parquet文件转换为pandas.DataFrame格式存放到内存,
False将使用迭代生成器(迭代生成器不支持打乱数据),减少大数据集内存占用
'''
super().__init__()
if cuda.device_count() >= 2 and not keep_in_memory:
raise ValueError(f'多GPU时使用MyDataset,参数keep_in_memory必须=True,否则无法进行分布式训练. 当前keep_in_memory={keep_in_memory}')
self.keep_in_memory = keep_in_memory
self.max_seq_len = max_seq_len
# 使用pyarrow.parquet读取,to_pandas、for遍历速度更快
parquet_table = pq.read_table(parquet_file)
# 获取数据集长度
self.length = parquet_table.num_rows
# 缓冲区大小不能超过数据长度
self.buffer_size = self.length if buffer_size > self.length else buffer_size
if keep_in_memory:
# 转化为pandas放到内存中
self.data = parquet_table.to_pandas()
else:
self.data = parquet_table
# 初始化tokenizer
self.tokenizer = PreTrainedTokenizerFast.from_pretrained(tokenizer_dir)
# 在这里初始化generator
self.sample_generator = self.item_generator()
def item_generator(self,) -> tuple:
'''
一条数据的生成器,防止大数据集OOM
'''
parquet_table = self.data
# 生成器是死循环,不用退出,训练结束(epoch结束)会停止调用next()
buffer_list = []
while True:
for prompt, response in zip(parquet_table['prompt'], parquet_table['response']):
# 缓存数据不够,添加数据
if len(buffer_list) < self.buffer_size:
buffer_list.append( (prompt.as_py(), response.as_py()) )
continue
# 执行到这里,缓存区够了,打乱数据
shuffle(buffer_list)
for p, r in buffer_list:
# 在这里迭代
yield p, r
# 迭代完成,清空缓存区
buffer_list = []
def __getitem__(self, index):
'''
返回一条样本
'''
if self.keep_in_memory:
data = self.data
prompt, response = data.iloc[index].prompt, data.iloc[index].response
else:
prompt, response = next(self.sample_generator)
max_seq_len = self.max_seq_len - 5 # len('[EOS]') = 5
# add an eos token note that end of resopnse, using in generate.
return f"{prompt[0: max_seq_len]}[EOS]", f"{response[0: max_seq_len]}[EOS]"
def collate_fn(self, data: list[list]) -> dict:
'''
合并一个批次数据返回
'''
tokenizer = self.tokenizer
prompt = tokenizer([item[0] for item in data], padding=True, return_token_type_ids=False)
response = tokenizer([item[1] for item in data], padding=True, return_token_type_ids=False)
input_ids = array(prompt.input_ids, dtype=int64)
input_mask = array(prompt.attention_mask, dtype=int64)
target_ids = array(response.input_ids, dtype=int64)
ret = {
'input_ids': LongTensor(input_ids),
'input_mask': LongTensor(input_mask),
'target_ids': LongTensor(target_ids),
}
return ret
def __len__(self) -> int:
return self.length
class ParquetDataset:
def __init__(self,
parquet_file: Union[str, dict],
tokenizer_dir: str,
keep_in_memory: bool=False,
cache_dir: str='./.cache',
buffer_size: int=10240,
max_len: int=512,
seed: int=23333
) -> None:
'''
使用huggingface的loaddataset方法加载,
parquet_file: 单个文件,此时只能使用dataset['train'],
多个文件请用:parquet_file={'train': 'train.parquet', 'test': 'test.parquet', 'validation': 'validation.parquet'})
其他用法见:https://huggingface.co/docs/datasets/loading
keep_in_memory: 是否将parquet文件转换为pandas.DataFrame格式存放到内存
'''
self.keep_in_memory = keep_in_memory
self.len_dict = self.__get_all_parquet_file_size(parquet_file=parquet_file)
self.max_len = max_len
self.tokenizer = PreTrainedTokenizerFast.from_pretrained(tokenizer_dir)
self.tokenizer = self.tokenizer
streaming = False if keep_in_memory else True
# streaming=True,否则大数据集OOM
dataset = load_dataset('parquet', data_files=parquet_file, cache_dir=cache_dir, streaming=streaming)
# 这里的batch_size不是训练的batch_size,是传递给precess_batch_func批处理的batch_size
dataset = dataset.map(self.precess_batch_func, batched=True, batch_size=buffer_size, \
remove_columns=['prompt', 'response'], fn_kwargs={'max_len': max_len})
dataset = dataset.with_format(type="torch")
if keep_in_memory:
dataset = dataset.shuffle(seed=seed, keep_in_memory=keep_in_memory)
else:
# 只能打乱缓冲区内的数据,不能打乱整个数据集,因此可以将缓存区设置稍微大一些
dataset = dataset.shuffle(seed=seed, buffer_size=buffer_size)
self.dataset = dataset
@staticmethod
def precess_batch_func(item: dict, max_len: int=512) -> dict:
'''
添加EOS
'''
max_len -= 5 # len('[EOS]') = 5
for i in range(len(item['prompt'])):
item['prompt'][i] = f"{item['prompt'][i][0: max_len]}[EOS]"
for i in range(len(item['response'])):
item['response'][i] = f"{item['response'][i][0: max_len]}[EOS]"
return {
'prompt': item['prompt'],
'response': item['response'],
}
def collate_fn(self, data: list[list]) -> dict:
'''
合并一个批次数据返回
'''
tokenizer = self.tokenizer
prompt = [item['prompt'] for item in data ]
response = [item['response'] for item in data ]
# 按批次pad
prompt_encoded = tokenizer(prompt, padding=True, return_token_type_ids=False)
response_encoded = tokenizer(response, padding=True, return_token_type_ids=False)
input_ids = array(prompt_encoded.input_ids, dtype=int64)
input_mask = array(prompt_encoded.attention_mask, dtype=int64)
target_ids = array(response_encoded.input_ids, dtype=int64)
ret = {
'input_ids': LongTensor(input_ids),
'input_mask': LongTensor(input_mask),
'target_ids': LongTensor(target_ids),
}
return ret
def __getitem__(self, index: str) -> datasets.Dataset:
'''
魔术方法,实现下标访问,如:dataset['train']、dataset['validation']、dataset['test']
'''
return self.dataset[index]
def __get_all_parquet_file_size(self, parquet_file: Union[str, dict]) -> dict:
'''
获取所有parquet file的长度
'''
len_dict = dict()
if type(parquet_file) is str:
train_len = self.__get_size_of_praquet(parquet_file)
len_dict['train'] = train_len
if type(parquet_file) is dict:
for split_type, file in parquet_file.items():
len_dict[split_type] = self.__get_size_of_praquet(file)
return len_dict
def __get_size_of_praquet(self, file_name: str) -> int:
'''
获取一个parquet文件的行数
'''
parquet_data = pq.read_table(file_name)
return parquet_data.num_rows
def __len__(self) -> int:
'''
魔术方法,如果只有一个数据集,返回默认数据集大小
'''
if len(self.len_dict) == 1:
return self.len_dict['train']
else:
raise Exception("this dataset contains many splited datasets, use `get_dataset_size(split_name)` function to get length, e.g: get_dataset_size('train')")
def get_dataset_size(self, split_name: str) -> int:
'''
获取每个切分数据集的长度
split_name可取:train、validation、test
'''
return self.len_dict[split_name]
def get_tokenizer(self, ) -> PreTrainedTokenizerFast:
return self.tokenizer
if __name__ == '__main__':
parquet_file = PROJECT_ROOT + '/data/my_valid_dataset.parquet'
tokenizer_dir = PROJECT_ROOT + '/model_save/tokenizer'
# example 1:
dataset = MyDataset(parquet_file, tokenizer_dir, keep_in_memory=False, max_seq_len=128)
print('\nexample 1, dataset size: ', len(dataset))
dataloader = DataLoader(dataset, batch_size=32, collate_fn=dataset.collate_fn)
for epoch in range(2):
print('epoch: {}'.format(epoch))
for step, batch in enumerate(dataloader):
x, x_mask, y = batch['input_ids'], batch['input_mask'], batch['target_ids']
print('step:{}'.format(step), x.shape, x_mask.shape, y.shape)
if step == 5:
break
# exit(0)
# example 2:
dataset = ParquetDataset(parquet_file, tokenizer_dir, keep_in_memory=True, max_len=32)
dataloader = DataLoader(dataset['train'], batch_size=32, collate_fn=dataset.collate_fn)
print('\nexample 2, dataset size: ', dataset.get_dataset_size('train'))
for epoch in range(2):
print('epoch: {}'.format(epoch))
for step, batch in enumerate(dataloader):
x, x_mask, y = batch['input_ids'], batch['input_mask'], batch['target_ids']
print('step:{}'.format(step), x.shape, x_mask.shape, y.shape)
if step == 5:
break